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Abstract—The so-called “super-exponential” methods (SEMs) are
attractive methods for solving blind signal processing problems. The
conventional SEMs, however, have such a drawback that they are very
sensitive to Gaussian noise. To overcome this drawback, we propose a
new SEM. While the conventional SEMs use the second- and higher order
cumulants of observations, the proposed SEM uses only the higher order
cumulants of observations. Since higher order cumulants are insensitive
to Gaussian noise, the proposed SEM is robust to Gaussian noise, which
is referred to as a robust super-exponential method (RSEM). To show the
validity of the proposed RSEM, some simulation results are presented.

Index Terms—Blind source separation, deflationary approach, Gaussian
noise, instantaneous mixtures, super-exponential methods.

I. INTRODUCTION

This correspondence deals with the blind source separation (BSS)
problem of a static system driven by (or linear mixtures of) independent
source signals. To solve this problem, the ideas of the super-exponen-
tial methods (SEMs) in [1], [4], and [6] are used. Several researchers
(e.g., [1], [4]–[6], [10]) have so far proposed some SEMs for solving in-
dependent component analysis (ICA), blind deconvolution (BD), and
blind channel equalization (BCE). One of the attractive properties of
the SEMs is that they are computationally efficient and that they con-
verge to a desired solution at a super-exponential rate. However, almost
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all the conventional SEMs have the drawback that they are very sensi-
tive to Gaussian noise (this will be shown in Section IV) because they
utilize the second- and higher order cumulants of observations.

In this correspondence, we propose a new SEM that overcomes the
drawback. The proposed SEM utilizes only the higher order cumu-
lants of observations, and hence, the proposed SEM becomes robust
to Gaussian noise, which is referred to as a robust super-exponential
method (RSEM). Simulation results show that the proposed RSEM is
robust to Gaussian noise and can successfully achieve the BSS of static
systems (or linear mixtures of independent source signals).

II. PROBLEM FORMULATION

Throughout this correspondence, let us consider the following
MIMO static system with n inputs and m outputs:

yyy(t) = HsHsHs(t) + nnn(t) (1)

where yyy(t) represents an m-column output vector called the observed
signal, sss(t) represents an n-column input vector called the source
signal, HHH is an m� n matrix, and nnn(t) represents an m-column noise
vector. It can be regarded as a linear mixture model with additive noise.

To achieve the blind source separation (BSS) for the system (1), the
following n filters, which are m-input single-output (MISO) static sys-
tems driven by the observed signals, are used:

zl(t) = www
T
l yyy(t); l = 1; 2; � � � ; n (2)

where zl(t) is the lth output of the filter, and wwwl =
[wl1; wl2; � � � ; wlm]T is an m-column vector representing the
m coefficients of the filter. Substituting (1) into (2), we obtain

zl(t) =www
T
l HsHsHs(t) +www

T
l nnn(t)

=ggg
T
l sss(t) +www

T
l nnn(t); l = 1; 2; � � � ; n (3)

where gggl = [gl1; gl2; � � � ; gln]
T := HHH

T
wwwl is an n-column vector. The

BSS problem considered in this correspondence can be formulated as
follows: Find n filters wwwl’s denoted by ~wwwl’s satisfying the following
condition, without the knowledge ofHHH , even if the Gaussian noisennn(t)
is added to the observed signal yyy(t)

~gggl = HHH
T ~wwwl = ~���l; l = 1; 2; � � � ; n (4)

where ~���l is an n-column vector whose elements ~�lr (r = 1; 2; � � � ; n)
are equal to zero, expect for the �lth element, that is, ~�lr = cl�(r��l),
r = 1; 2; � � � ; n.

Here, �(t) is the Kronecker delta function, cl is a number standing
for a scale change, and �l is one of integers f1; 2; � � � ; ng such that the
set f�1; �2; � � � ; �ng is a permutation of the set f1; 2; � � � ; ng.

To solve the BSS problem, we put the following assumptions on the
system and the source signals.

A1) The matrix HHH in (1) is an m � n (m � n) matrix and has
full column rank.

A2) The input sequence fsss(t)g is a zero-mean, non-Gaussian
vector stationary process whose element processes fsi(t)g,
i = 1; 2; � � � ; n are mutually statistically independent and
have nonzero (p+ 1)st-order cumulants �i defined as

�i = cumfsi(t); si(t); � � � ; si(t)

p+1

g 6= 0 (5)

where i = 1; 2; � � � ; n, and p � 2.
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A3) The noise signal sequence fnnn(t)g is a zero-mean, Gaussian
vector stationary process whose element processes fni(t)g,
i = 1; 2; � � � ;m are mutually statistically independent.

A4) The two vector sequences fnnn(t)g and fsss(t)g are mutually
statistically independent.

It is assumed for the sake of simplicity in this correspondence that
all the signals and all the systems are real valued.

III. ROBUST SUPER-EXPONENTIAL METHODS (RSEMS)

A. Two-Step Iterative Procedure for Vector gggl

To find solutions in (4), the following two-step iterative procedure
with respect to the elements glj , j = 1; 2; � � � ; n of the vector gggl is
used:

g
[1]
lj =

�j
jaj

gplj ; j = 1; 2; � � � ; n (6)

g
[2]
lj =

g
[1]
lj

�2
z

; j = 1; 2; � � � ; n (7)

where glj on the right-hand side of (6) is an element of gggl before the
iteration, (�)[1] and (�)[2] stand for the results of the first step and the
second step per iteration, p is a non-negative integer, aj denotes a pos-
itive number (in Section III-B, it will be shown how we choose the
values of aj ’s), j denotes the fourth-order cumulant of sj(t), that is,
j is equal to �j in case of p = 3, and �2

z denotes the variance of the
output signal zl(t). Equation (6) is derived by replacing �2

s of (26) in
[1] with jaj , where �2

s denotes the second-order cumulant of si(t),

and (7) is used to normalize g[1]lj obtained by (6).
Here, it should be noted that in the conventional two-step procedures

(e.g., [1], [4]–[6], [10]), the denominator of the right-hand side of (6)
was set to 1 or the variance of sj(t), whereas we consider the fourth-
order cumulant of sj(t), i.e., j .

Let glj(k) denote the value obtained in the kth cycle of the iterations
of two steps (6) and (7). The important fact of the two-step procedure is
that the n values glj(k) (j = 1; 2; � � � ; n) converge to zero, except for
only one of the values, as the iteration number k approaches infinity,
that is, k ! 1. The magnitude of the remaining one converges to a
positive constant. This will be shown in the following theorem.
Theorem 1: Let glj(0) be an initial value for iterations of two steps

(6) and (7) for each j = 1; 2; � � � ; n. Let �j be a non-negative scalar
defined as

�j =
�j
jaj

: (8)

Let j0 be j0 = argmaxj2f1;2;���;ng �j jglj (0)j. Suppose the index
j0 is unique, that is, �j jglj (0)j > �j jglj (0)j for any other j 2
f1; 2; � � � ; ng. Then, as k ! 1, it follows that

lim
k!1

jglj (k)j =
0; for j 6= j0
~cj 6= 0; for j = j0

(9)

where ~cj is a scalar positive constant.
Proof: From (6) and (8), choosing j0 so that glj (k) 6= 0, we

obtain

g
[1]
lj (k)

g
[1]
lj (k)

=
�p�1
j

�p�1
j

g
[1]
lj (k � 1)

p

g
[1]
lj (k � 1)

p (10)

where the integer k denotes the iteration time. Note that
jg

[1]
lj (k)j=jg

[1]
lj (k)j is not modified by the normalization of the second

step. Therefore, it is possible to solve jg
[2]
lj (k)j=jg

[2]
lj (k)j from the

recursive formula (10), which yields

g
[2]
lj (k)

g
[2]
lj (k)

=
�j
�j

�j
�j

g
[2]
lj (0)

g
[2]
lj (0)

p

(11)

for any non-negative integer k. For j0 = argmaxj �j jglj (0)j, one can
see that all the other values jg[2]lj (k)j (j 6= j0) quickly become small

compared to jg[2]lj (k)j. Taking into account the normalization of the

second step, this means that jg[2]lj (k)j 6= 0 and jg[2]lj (k)j ! 0 for all
j 6= j0. This implies that the infinite iteration of two steps (6) and (7)
gives (9). Moreover, (11), along with the normalization of the second
step, means that the sequence fglj(k)g converges to a desired value at
a super-exponential rate for all j = 1; � � � ; n.

B. Two-Step Iterative Procedure for Equalizer Vector wwwl

In (6) and (7), since the parameters glj ’s include the unknown param-
eters hij ’s, the two-step procedure cannot be handled directly. There-
fore, by solving the following weighted least squares problem, we de-
rive an algorithm with respect to wwwl so that the two steps (6) and (7)
can be handled indirectly.

min
www

(HHHTwwwl � gggl)
T
���(HHHTwwwl � gggl); l = 1; 2; � � � ; n: (12)

Here, ��� is a diagonal matrix with positive diagonal elements. The so-
lutions are known to be given by

wwwl = (H�HH�HH�HT )
y
H�gH�gH�gl; l = 1; 2; � � � ; n (13)

where y denotes the pseudo-inverse operation of a matrix. In the con-
ventional methods [1], [4]–[6], [10], the positive diagonal elements of
��� are set to 1 or the variances of the source signals. This means that
H�HH�HH�HT is calculated by the second-order statistics of the observed
signal yyy(t). We consider that this is the reason why the conventional
methods are sensitive to Gaussian noise.

In what follows, we will show that the weighted least squares ap-
proach in (12) can be applied to a set of fourth-order cumulants of the
observed signals yi(t) (i = 1; 2; � � � ;m), if we choose appropriately
a diagonal matrix ��� in (12). To this end, we introduce fourth-order
cumulant matrices of the m-vector random process fyyy(t)g [8], which
constitute a set of m�m matrices CCC(4)

yyy;i;j (i; j = 1; 2; � � � ;m), where
each is defined by

[CCC
(4)
yyy;i;j]q;r = cum fyq(t); yr(t); yi(t); yj(t)g (14)

where [x]q;r denotes the (q; r)th element of the matrix CCC
(4)
yyy;i;j . Then,

we consider an m �m matrix ~RRR expressed by

~RRR =

m

i;j=1

�ijCCC
(4)
yyy;i;j (15)

where �ij ’s are either 1 or 0, which represent design parameters. It is
shown by a simple calculation (see the Appendix) that (15) becomes

~RRR = HHH ~���HHHT (16)

where ~��� is a diagonal matrix defined by

~��� := diagf1~a1; 2~a2; � � � ; n~ang (17)

~ar :=

m

i;j=1

�ijhirhjr; r = 1; 2; � � � ; n (18)
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and diagf� � �g denotes a diagonal matrix with the diagonal elements
built from its arguments.

Here, we note that the diagonal matrix ~��� is not positive semi-definite
but the diagonal matrix �̂�� defined by

�̂�� := diag fj1~a1j; j2~a2j; � � � ; jn~anjg (19)

is positive semi-definite. It is clear from the definitions (17) and (19)
that there exists a sign matrix _III such that ~��� := �̂��_III , where the sign
matrix _III is defined as a diagonal matrix whose diagonal elements are
either +1 or �1.
Remark 1: If �̂�� is full rank, then by putting ��� in (12) to �̂��, the so-

lution (HHH�̂��HHHT )
y
HHH�̂��gggl can be obtained from (12). However, HHH�̂��HHHT

cannot be calculated from (15), that is, ~RRR 6= HHH�̂��HHHT .
Here, we show the following theorem.
Theorem 2: IfHHH is of full column rank and both �̂�� and ~��� are of full

rank, then

(HHH�̂��HHHT )
y
HHH�̂��gggl = (HHH ~���HHHT )

y
HHH ~���gggl (20)

where ~��� := �̂��_III .
Proof: Let the left-hand and the right-hand sides of (20) be de-

noted by ŵwwl and ~wwwl, respectively. Then, we will show that ~wwwl can be
derived from ŵwwl = (HHH�̂��HHHT )

y
HHH�̂��gggl.

SinceHHH has full column rank, using a property of the pseudo-inverse
operation (see [3, p. 433]), we obtain

ŵwwl := (HHH�̂��HHHT )
y
HHH�̂��gggl = HHHTy(HHH�̂��)yHHH�̂��gggl

=HHHTy�̂��
�1

HHHyHHH�̂��gggl = HHHTygggl (21)

where the fourth equality comes from the fact that HHHyHHH = III because
HHH is of full column rank. From (21) and HHHyHHH = III , we have

HHHTygggl =HHHTy~���
�1

HHHyHHH ~���gggl

=(HHH ~���HHHT )
y
HHH ~���gggl = ~wwwl (22)

where the last equality comes from the definition of ~wwwl. The reverse,
which ŵwwl can be derived from ~wwwl = (HHH ~���HHHT )

y
HHH ~���gggl, can also be

shown in the same way. Therefore, both ŵwwl and ~wwwl are identical.
Remark 2: If HHH is not of full column rank, Theorem 2 does not

hold. Because, in such a case, HHHTHHH does not become a nonsingular
matrix. Moreover, it can be seen from (21) and (22) that ŵwwl and ~wwwl are,
respectively, irrelevant to �̂�� and ~���, that is, Theorem 2 holds for any pair
of full-rank diagonal matrices. In fact, ŵwwl = ~wwwl = HHHTygggl, which is
shown in (21) and (22), attains the zero minimum value of the weighted
least squares function in (12) for any diagonal positive definite matrix.
In general, the right-hand side of (20) is always expressed by the fourth-
order cumulants or fourth- and higher order cumulants of fyyy(t)g.

From Theorem 2 and Remark 2, it is seen that the right-hand side
of (13) can be given by the right-hand side of (20) under the condition
that the diagonal matrix ~���(= �̂��_III) is full rank. This condition, however,
will be satisfied by the following theorem.
Theorem 3: Let HHH be full column rank and i (i = 1; 2; � � � ; n) be

nonzero for all i. Suppose that �ij = 1 for i = j and �ij = 0 for i 6= j
[see (15)]. Then, the diagonal matrix ~��� in (17) becomes full rank.

Proof: If �ij in (15) is 1 for i = j and 0 for i 6= j, then ~ar’s of
~��� in (17) become

~ar =

m

i=1

h2ir; for r = 1; 2; � � � ; n: (23)

Suppose ~��� does not have full rank. Then, one of the diagonal elements
of ~��� becomes zero, that is, r~ar = 0 for some r. It implies that ~ar =

m

i=1 h
2
ir = 0 because r 6= 0. If m

i=1 h
2
ir = 0, then hir = 0

for all i. This contradicts the assumption that HHH is full column rank.
Therefore, ~��� under these conditions is of full rank.

For the time being, in this correspondence, we consider (15) with
�ij = 1 for i = j and �ij = 0 for i 6= j. As for HHH ~���gggl, by using (6)
with aj = ~aj in (23) and the similar way as in [1], it can be calculated
by

dddl := [dl1; dl2; � � � ; dlm]T (24)

where dlj is given by dlj = cumfzl(t); zl(t); � � � ; zl(t)

p

; yj(t)g. Then,

(13) can be expressed as

www
[1]
l := ~RRR

y
dddl; l = 1; 2; � � � ; n: (25)

Since the second step (7) is a normalization of gggl, it is easily shown
that the second step reduces to

www
[2]
l :=

www
[1]
l

�2
z

: l = 1; 2; � � � ; n (26)

Therefore, (25) and (26) are our proposed two steps to modify wwwl,
which becomes one cycle of iterations in the super-exponential method
[1], [4]–[6], [10]. Then, since the right-hand side of (25) consists of
only higher order cumulants, the modification of wwwl is not affected by
Gaussian noise. This comes from the fact that higher order cumulants
are insensitive to additive (even colored) Gaussian noise (see [8, Prop.
4, p. 2463]). This is a novel key point of our proposed super-exponen-
tial method, from which the proposed method is referred to as a robust
super-exponential method (RSEM).

C. Proposed RSEM

For now, there are two approaches to multichannel (or MIMO)
BSS, a concurrent BSS approach and a deflationary BSS approach.
The former is to find all the n filters ~wwwl’s in (4) concurrently, whereas
the latter finds sequentially (or iteratively with respect to source
signals) the filters ~wwwl’s one by one. It is well known that iterative
algorithms based on the former approach converge to a desired
solution when they start in a neighborhood of the desired solution,
whereas iterative algorithms based on the latter approach converge
to a desired solution globally (or regardless of their initialization)
[1]. The latter approach is employed in this correspondence. Let
l denote the number of the sources to be extracted. At first, set
l = 1; then, ~www1 is calculated by the two steps (25) and (26) such
that HHHT ~www1 = ~���1 = [0; � � � ; 0; 1(�1th element); 0; � � � ; 0]T . Next,
the contribution signals �i� (t) = hi� s� (t) (i = 1; 2; � � � ;m)
are calculated by using the output signal z1(t) = ~wwwT

1 yyy(t). Then,
by calculating yi(t) � �i� (t) for i = 1; 2 � � � ;m, we remove the
contribution signals from the outputs in order to define the outputs of a
multichannel system with n� 1 inputs and m outputs. The number of
inputs becomes deflated by one. The procedures mentioned above are
continued until l = n. Therefore, the proposed RSEM is summarized
as shown in Table I.

The procedure from Steps 5 to 7 are implemented to make it pos-
sible to obtain solutions in (4). In Step 6, the calculation of yyyl(t) �
(dddl=�~z)~zl(t) is equivalent to the calculations of yi(t) � �i� (t) (i =
1; 2; � � � ; n) mentioned above. (On the details of Step 6, see Section V
or [5].)
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TABLE I
PROPOSED METHOD

IV. SIMULATION RESULTS

To demonstrate the validity of the proposed RSEM, many computer
simulations were conducted. One of the results is shown in this section.
We considered a two-input and three-output system, that is, HHH in (1)
was set to be

HHH =

1:0 0:6

0:7 1:0

0:2 0:5

: (27)

Two source signals s1(t) and s2(t) were sub-Gaussian and super-
Gaussian, respectively, in which s1(t) takes one of two values �1 and
1 with equal probability 1/2, s2(t) takes one of three values�2, 0, and 2
with probability 1/8, 6/8, and 1/8, respectively, and they are zero-mean
and unit variance. The parameter p in (5) was set to be p = 3, that
is, �j (j = 1; 2) in (6), were the fourth-order cumulants of the source
signals. These values were set to be �1 = �2 and �2 = 1. Three in-
dependent Gaussian noises (with identical variance �2n) were added to
the three outputs yi(t)’s at various SNR levels. The SNR is, for con-
venience, defined as SNR := 10 log10(�

2
s =�2n), where �2s ’s are the

variances of si(t)’s and are equal to 1. Initial values of wwwl were ran-
domly chosen from the values between�1 and 1. As a measure of per-
formance, we used the multichannel intersymbol interference (MISI)
defined in the logarithmic (decibel) scale by

MISI = 10 log10

n

l=1

n

j=1
jglj j

2 � jgl�j
2
max

jgl�j2max

+

n

j=1

n

l=1
jglj j

2 � jg
�j j

2
max

jg
�j j2max

(28)

where jgl�j2max and jg
�j j

2
max are, respectively, defined by jgl�j2max :=

maxj=1;���;n jglj j
2 and jg

�j j
2
max := maxl=1;���;n jglj j

2. The value of
MISI becomes �1, if the ~gggl’s in (4) are obtained, and hence, a minus
large value of MISI indicates the proximity to the desired solution. As
a conventional method, the method proposed in [5] was used for com-
parison.

Fig. 1 shows the results of performances for the proposed RSEM and
the conventional SEM when the SNR levels were, respectively, taken to
be 0 (�2n = 1), 2.5, 5, 10, 15, and1 dB (�2n = 0), in which each MISI

shown in Fig. 1 was the average of the performance results obtained by
50 independent Monte Carlo runs. In each Monte Carlo run, the number
of the integers k’s in Step 4 (see Table I) was 10, in which ~RRR and dddl
were estimated by data samples in the following three cases: (Case 1)
1000 data, (Case 2) 10 000 data, and (Case 3) 100 000 data.

It can be seen from Fig. 1 that as the number of data samples that
are needed to estimate the cumulants increases, the proposed RSEM

Fig. 1. Performances for the proposed RSEM and the conventional SEM.

shows better performance, whereas the performances of the conven-
tional SEM hardly change. This implies that the performance of the
RSEM depends on the accuracy of the estimate of the higher order cu-
mulants. We consider, however, that since, in the above three cases, the
performances of the RSEM are better than the ones of the conventional
SEM, the proposed RSEM is effective for solving the BSS problem.

V. DISCUSSIONS

In the method shown in Table I, the calculation of Step 6 is important
for implementing a deflationary SEM. Let us review the calculation of
Step 6 in Table I. Suppose that ~ggg1 = ~���1 in (4) is obtained for l = 1.
Then, from (3)–(5), and (24), ~z1(t), �~z , and ddd1 are, respectively

~z1(t) = c1s� (t) + ~wwwT
1 nnn(t) (29)

�~z = cp+11 �� (30)

ddd1 = [h1� cp1�� ; h2� cp1�� ; � � � ; hm� cp1�� ]
T
: (31)

Therefore, from (29)–(31), ŷyy1(t) := (ddd1=�~z)~z1(t) of Step 6 in Table I
becomes

ŷyy1(t) =

h1� s� (t) + �11 ~www
T
1 nnn(t)

h2� s� (t) + �21 ~www
T
1 nnn(t)

...
hm� s� (t) + �m1 ~www

T
1 nnn(t)

(32)

where �i1 := hi� =c1 (i = 1; 2; � � � ; m). When we calculate

~yyy1(t) = yyy1(t)� ŷyy1(t) (33)



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 5, MAY 2005 1937

the output ~yyy
1
(t) in (33) is the output of a system that has n� 1 inputs

and m outputs. Therefore, by the calculation of Step 6, the number of
inputs becomes deflated by one.

VI. CONCLUSIONS

We have proposed a deflationary SEM for solving the BSS problem,
in which the solutions of the problem ~wwwl’s satisfying (4) are found one
by one. The proposed SEM is not sensitive to Gaussian noise, which
is referred to as a robust super-exponential method (RSEM). This is
a novel property of the proposed method, whereas the conventional
methods do not posses it. It was shown from the simulation results that
the proposed RSEM was robust to Gaussian noise and could success-
fully solve the BSS problem.

APPENDIX

DERIVATION OF (16)

From the properties of the cumulant (see [6]),
cumfyq(t); yr(t); yi(t); yj(t)g in (14) becomes

cum fyq(t); yr(t); yi(t); yj(t)g

=
l ;l ;l ;l

hql hrl hil hjl cumfsl (t); sl (t); sl (t); sl (t)g

+ cum fnq(t); nr(t); ni(t); nj(t)g (34)

=

n

l=1

hqlhrlhilhjll = hhh
T
q ���h hhhr (35)

where the second equality comes from assumptions A2) and A3) and
the fact that the fourth-order cumulant of Gaussian noises ni(t)’s are
equal to zero, hhhq := [hq1; hq2; � � � ; hqn]

T , ���h is a diagonal matrix
defined by

���h =

1hi1hj1 0 � � � 0

0 2hi2hj2 � � � 0
...

...
. . .

...
0 0 � � � nhinhjn

and hhhr := [hr1; hr2; � � � ; hrn]
T . From (35), we obtain

m

i;j=1

�ijcum fyq(t)yr(t)yi(t)yj(t)g = hhh
T
q ����h hhhr (36)

where ����h is a diagonal matrix defined by

1 i;j
hi1hj1 0 � � � 0

0 2 i;j
hi2hj2 � � � 0

...
...

. . .
...

0 0 � � � n i;j
hinhjn

:

It can be seen that (36) expresses the (q; r)th element of HHH ~���HHHT .
Therefore, (16) holds true.
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Iterative Decoding of Wrapped Space-Time Codes

Aydin Sezgin, Student Member, IEEE, and Holger Boche

Abstract—We study the iterative decoding of Wrapped Space-Time
Codes (WSTCs) employing per-survivor-processing with the soft-output
Viterbi-algorithm (SOVA). We use a novel receiver scheme that incorpo-
rates extrinsic information delivered by the SOVA. The decision metric of
the SOVA is developed, and the performance is analyzed.

Index Terms—Iterative decoding, MIMO, SOVA, space-time codes.

I. INTRODUCTION

In recent years, the goal of providing high-speed wireless data ser-
vices has generated a great amount of interest among the research com-
munity. Recent information-theoretic results have demonstrated that
the capacity of the system in the presence of Rayleigh fading improves
significantly with the use of multiple transmit and receive antennas [1],
[2].

Diagonal Bell Labs Layered Space-Time (DBLAST), which is an ar-
chitecture that theoretically achieves a capacity for such multiple-input
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