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ABSTRACT

Multichannel blind deconvolution of finite-impulse re-
sponse (FIR) or infinite-impulse response (IIR) systems
is investigated using the multichannel super-exponential
method. First, some properties are shown for the rank
of the correlation matrices relevant to the multichan-
nel super-exponential method. Then, the matrix inver-
sion lemma is extended to the degenerate rank case.
Based on these results, two types of adaptive mul-
tichannel super-exponential algorithms are presented,
that is, the one in covariance form and the other in
QR-factorization form.

1. INTRODUCTION

Multichannel blind deconvolution has recently received
attention in such field as digital communications, image
processing and neural information processing.

Recently, Shalvi and Weinstein proposed an attrac-
tive approach to single-channel blind deconvolution called
the super-exponential method (SEM) [1]. Extensions
of their idea to multichannel deconvolution were pre-
sented by Inouye and Tanebe [2], Martone [3], [4], and
Yeung and Yau [5]. In particular, Martone [3] proposed
an adaptive version of the SEM based on low-rank pro-
cessing [6], but the Martone algorithm require a rank-
revealing technique, while the present paper presents
an explicit formula for revealing the rank of relevant
correlation matrices in the absent of noise.

In the present paper, we show some properties of the
rank of the relevant correlation matrices, and present
a matrix pseudo-inversion lemma. Based on these re-
sults, we propose two type of adaptive multichannel
super-exponential algorithms (AMSEA’s), the one in
covariance (correlation or Kalman-filter) form and the
other in QR-factorization form.

The present paper uses the following notation: Let
Z denote the set of all integers. Let Cm×n denote the
set of all m × n matrices with complex components.
The superscripts T , , H and † denote, respectively,
the transpose, the complex conjugate, the complex con-
jugate transpose (Hermitian) and the (Moore-Penrose)

pseudoinverse operations of a matrix. Let i = 1, n stand
for i = 1, 2, · · · , n.

2. ASSUMPTIONS AND PRELIMINARIES

We consider an MIMO channel system with n inputs
and m outputs as described by

y(t) =
X
k=

H(k)s(t k), t Z, (1)

where
s(t) n-column vector of input (or source) signals,
y(t) m-column vector of channel outputs,
H(k) m× n matrix of impulse responses.

The transfer function of the channel system is defined
by

H(z) =
X
k=

H(k)zk, z C. (2)

For the time being, it is assumed for theoretical analysis
that noise is absent in (1).

To recover the source signals, we process the output
signals by an n × m equalizer (or deconvolver) W (z)
described by

z(t) =
X
k=

W (k)y(t k), t Z. (3)

The objective of multichannel blind deconvolution
is to construct an equalizer that recovers the original
source signals only from the measurements of the cor-
responding outputs.

We put the following assumptions on the systems
and the source signals.
A1) The transfer function H(z) is stable and has full
column rank on the unit circle |z| = 1 [ this implies
that the unknown system has less inputs than outputs,
i.e., n<m, and there exists a left stable inverse of the
unknown system ].
A2) The input sequence {s(t)} is a complex, zero-
mean, non-Gaussian random vector process with ele-
ment processes {si(t)}, i = 1, n being mutually inde-
pendent. Moreover, each element process {si(t)} is an
i.i.d. process with a nonzero variance 2

i and a nonzero
fourth-order cumulant i. The variances

2
i ’s and the
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fourth-order cumulants i’s are unknown.
A3) The equalizerW (z) is an FIR system of su cient
length L so that the truncation e ect can be ignored.

Remark 1: As to A1), if the channel system H(z)
is FIR, then a condition of the existence of an FIR
equalizer is rankH(z) = n for all nonzero z C [7].
Moreover, if H(z) is irreducible, then there exists an
equalizerW (z) of length L<nK, where K is the length
of the channel system [7]. Besides, it is shown that
there exists generically (or except for pathological cases)
an equalizerW (z) of length L<d nK

m n
e, where dxe stands

for the smallest integer that is greater than equal to x.

For now, there are two approaches to multichannel
(or MIMO) blind deconvolution, a concurrent blind de-
convolution approach and a deflationary blind decon-
volution approach. The former is to deconvolve (or
recover) concurrently all the source signals, while the
latter is to deconvolve sequentially (or iteratively with
respect to sources) the source signals one by one. The
former approach is employed in the present paper and
the latter approach will be developed in a forthcoming
paper.

Let us consider an FIR equalizer with the transfer
function W (z) given by

W (z) =

L2X
k=L1

W (k)zk, (4)

where the length L:=L2 L1 + 1 is taken to be suf-
ficiently large. Let w̃i be the Lm-column vector con-
sisting of the tap coe cient (corresponding to the ith
output) of the equalizer defined by

w̃i :=
£
wT
i,1,w

T
i,2, · · · ,w

T
i,m

¤T
CmL, (5)

wi,j =
h
wi,j

(L1), wi,j
(L1+1), · · · , wi,j

(L2)
iT

CL,

(6)
where wi,j

(k) is the (i, j)th element of matrix W (k).

Inouye and Tanebe [2] proposed the multichannel
super-exponential algorithm for finding the tap coe -
cient vectors w̃i’s of the equalizerW (z), of which each
iteration consists of the following two steps:

w̃
[1]
i = R̃

†

Ld̃i for i = 1, n, (7)

w̃
[2]
i =

w̃
[1]
iq

w̃
[1]H
i R̃Lw̃

[1]
i

for i = 1, n, (8)

where (·)[1] and (·)[2] stand respectively for the result
of the first step and the result of the second steps. Let
ỹ(t) be the Lm-column vector consisting of the L con-
secutive inputs of the equalizer define by

ỹ(t) :=
£
ȳ1(t)

T , ȳ2(t)
T , · · · , ȳm(t)

T
¤T

CmL, (9)

ȳi(t) := [yi(t L1), yi(t L1 1), · · · , yi(t L2)]
T

CL,

(10)
where yi(t) is the ith element of the output vector y(t)
of the channel system in (1). Then the correlation ma-
trix R̃L is represented as

R̃L = E
h
ỹ (t)ỹT (t)

i
CmL×mL, (11)

and the forth-order cumulant vector d̃i is represented
as

d̃i = E
h
|zi(t)|

2
zi(t)ỹ (t)

i
2E
h
|zi(t)|

2
i
E [zi(t)ỹ (t)]

E
£
zi
2(t)

¤
E [zi (t)ỹ (t)] , (12)

where E[x] denotes the expectation of a random vari-
able x. We note that the last term can be ignored
in case of E[si

2(t)]=0 for all i = 1, n, in which case
E[zi

2(t)]=0 for all i = 1, n.

3. PROPERTIES OF CORRELATION
MATRICES AND MATRIX
PSEUDO-INVERSION

We consider the rank deficiency problem of the corre-
lation matrix R̃L of {ỹ(t)} in (11) with respect to the
length L=L2 L1+1 of the equalizerW (z). This prob-
lem is very important for solving the equation (7) and
also a fundamental issue in low-rank adaptive signal
processing [6].

Theorem 1: Let R̃L CmL×mL be the correlation
matrix defined by (11) for the channel system H(z)
with n inputs and m outputs satisfying A1) and A2),
where L=L2 L1 + 1 is the length of the equalizer
W (z). Then the following statements hold true:
1) If m = n, the R̃L is nonsingular for L = 1, 2, · · ·.
2) Ifm > n andH(z) is the transfer function of an FIR
system of length K, then the sequence {R̃L} decreases
monotonically as L increases, and

rankR̃L = nL, for L nK. (13)

3) If m > n and if H(z) is the rational transfer func-
tion of an IIR system, then the sequence {rankR̃L}
decreases as L increases, and

lim
L

1

L
rankR̃L = n. (14)

In order to develop an adaptive version of the multi-
channel super-exponential algorithm, the matrix inver-
sion lemma [9] should be extended to the rank-degenerate
case. The following lemma gives an explicit formula of
the pseudoinverse for a positive semidefinite Hermitian
matrix A added to a general rank-one matrix bbH .

Lemma 1: Let A Cn×n be a positive semidefi-
nite Hermitian matrix, and b Cn be a nonzero vector.
Let the linear vector spaceCn be uniquely decomposed
as Cn=ImA (ImA) , where ImA denotes the image
space of A and (ImA) denotes the orthogonal com-
plement of ImA. Let b Cn be decomposed uniquely
as

b = b1 b2 with b1 ImA and b2 (ImA) . (15)

Let Q be defined as

Q = A+ bbH Cn×n. (16)

Then the pseudoinverse Q† of matrix Q is explicitly
expressed, depending on the values of vectors b1 and
b2 and matrix A, as follows:
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1) If b2= 0, then

Q† = A† A†b1b
H
1 A

†

1 + bH1 A
†b1

. (17)

2) If b2 6= 0 and b1= 0, then

Q† = A† +
b2b

H
2

(bH2 b2)
2
. (18)

3) Let l be a non-negative number defined by

l := |1 + bH1 Q
†
bb2|

2 bH1 Q
†
bb1b

H
2 Q

†
bb2, (19)

where Q†
b is defined by

Q
†
b := A

† A†b1b
H
1 A

†

1 + bH1 A
†b1

+
b2b

H
2

(bH2 b2)
2
. (20)

Then in the case when b1 6= 0, b2 6= 0 and l 6= 0,

Q† = Q†
b Q

†
b [b1, b2]Qd [b1, b2]

H
Q
†
b, (21)

where

Qd :=
1

l

"
bH2 Q

†
bb2 1 + bH1 Q

†
bb2

1 + bH2 Q
†
bb1 bH1 Q

†
bb1

#
C2×2.

(22)
Remark 2:We can show 0 < l 1 under the assump-
tions.

4. ADAPTIVE SUPER-EXPONENTIAL
ALGORITHMS

Except for the case when the number of outputs equals
the number of inputs, i.e., m = n, the correlation ma-
trix R̃L is not of full rank. Situations with the number
of independent sources (or inputs) being strictly less
than the number of sensors (or outputs) are often en-
countered in various applications such as digital com-
munication, image processing and neural information
processing. Moreover, if the underlying channel sys-
tem exhibits slow changes in time, processing all the
available data jointly is not desirable, even if we can ac-
commodate the computational and storage loads of the
batch algorithm in (7) and (8), because di erent data
segments correspond to di erent channel responses. In
such a case, we want to have an adaptive algorithm
which is capable of tracking the varying characteristics
of the channel system. In the following, we propose
two types of AMSEA’s, that is, the one in covariance
(correlation or Kalman-filter) form and the other in
QR-factorization form.

Consider the batch algorithm in (7) and (8). The
equation (8) constraints the length of vector w̃i to
equal one, and thus we assume this constraint is al-
ways satisfied using a normalization or an automatic
gain control (AGC) of w̃i at each time t. To develop
an adaptive version of (7), we must specify the depen-
dency of each time t and rewrite (7) as

w̃i(t) = R̃
†

L(t)d̃i(t) , i = 1, n. (23)

Here the subscript L of R̃L(t) is omitted for simplicity
hereafter. The recursions for time-updating of matrix

R̃(t) and vector d̃i(t) in (23) are given as

R̃(t) = R̃(t 1) + (1 )ỹ (t)ỹT (t), (24)

d̃i(t) = d̃i(t 1) + (1 )ỹ (t)z̃i(t), (25)

where

z̃i(t) := (|zi(t)|
2
2 < |zi(t)|

2
>)zi(t) < z2i (t) > zi (t).

(26)
Here < |zi(t)|

2 > and < z2i (t) > denote respectively the
estimates of E

£
|zi(t)|

2
¤
and E

£
zi(t)

2
¤
at time t, is

a positive constant close to, but less than one, which
accounts for some exponential weighting factor or for-
getting factor [9].

By applying Lemma 1 for calculating the pseudoin-
verse of R̃(t), we obtain the following theorem which
determines w̃i(t) from w̃i(t 1), ỹ(t) and zi(t).

Theorem 2: The recursion for w̃i(t) is

w̃i(t) = P (t)R̃(t)w̃i(t 1)+k(t)
h
z̃i(t) ỹ

T (t)w̃i(t 1)
i
,

(27)
where
k(t) := (1 )P (t)ỹ (t), (28)

z̃i(t) := (|zi(t)|
2 2 < |zi(t)|

2
>)zi(t) < z2i (t) > zi (t),

(29)

< |zi(t)|
2
>:= < |zi(t 1)|2 > +(1 )|zi(t)|

2
,

(30)
< z2i (t) >:= < z2i (t 1) > +(1 )z2i (t), (31)

and the formula of the recursion for P (t) from P (t 1)
by using Lemma 1 is very lengthy and is omitted for
page limit. Here is a positive constant less than .
These equations are initialized by their values appro-
priately selected or calculated by the batch algorithm
in (7) and (8) at initial time t0 and used for t = t0+1,
t0 + 2, · · ·.

Before presenting another type of adaptive algo-
rithms, we mention the following lemma on the so-
called QR-factorization of a general matrix A.

Lemma 2 [8],[10]: Given an n × n Hermitian A
Cn×n. Let r be a chosen integer satisfying | r| >

| r+1|, where the eigenvalues 1, 2,· · ·, n of A are ar-
ranged in decreasing order of magnitude. Given an n×r
matrix Q0 with orthonormal columns and generate a
sequence of matrices {Qk} Cn×r as follows:

Zk = AQk 1, (32)

QkRk = Zk : QR-factorization, (33)

whereQk Cn×r is a matrix with orthonormal columns
and Rk Cr×r is an upper triangular matrix. If Q0 is
not unfortunately chosen, then the sequence {Qk} con-
verges to a matrix of r dominant eigenvectors, and the
upper triangular sequence {Rk} converges the diagonal
matrix of r dominant eigenvalues.

By applying Lemma 2 for calculating the pseudoin-
verse of R̃(t), we have the following theorem which
gives an adaptive solution w̃i(t) of (23) from Qr(t 1),
Qr(t 2), d̃i(t 1), ỹ(t) and zi(t) (where, for exam-
ple, Qr(t 1) CmL×r represents approximately r
dominants eigenvectors of mL×mL matrix R̃(t 1)).

Theorem 3: Let r be fixed as r = nL, where n is
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the number of the inputs of the channel system in (1)
and L is the length of the equalizer in (4). Then an
adaptive solution w̃i(t) of (23) is

w̃i(t) = Qr(t 1)R 1
r (t)QH

r (t)d̃i(t), (34)

whereQr(t) andRr(t) is obtained by the QR decompo-
sition of matrix Z(t) defined by Z(t) := R̃(t) Qr(t 1),
which is decomposed as

Z(t) = Qr(t)Rr(t) CmL×r,

Qr(t) CmL×r, Rr(t) Cr×r, (35)

and the update of Z(t) is

Z(t) = Z(t 1)QH
r (t 2)Qr(t 1)

+ (1 )ỹ (t)ỹT (t)Qr(t 1). (36)

The update of d̃i(t) is

d̃i(t) = d̃i(t 1) + (1 )ỹ (t)z̃i(t), (37)

where

z̃i(t) := (|zi(t)|
2
2 < |zi(t)|

2
>)zi(t) < z2i (t) > zi (t),

(38)

< |zi(t)|
2
>= < |zi(t 1)|

2
> +(1 )|zi(t)|

2
, (39)

< z2i (t) >= < z2i (t 1) > +(1 )z2i (t). (40)

These equations are initialized by their values appropri-
ately selected or calculated by the batch algorithm in
(7) and (8) at an initial time t0 and used for t = t0+1,
t0 + 2, · · · .

Remark 3: If the number n of inputs varies dy-
namically, we should estimate the number of the inputs
before using Theorem 3.

5. SIMULATIONS

For page limit, we show only one of the simulation re-
sults in Figure 1 by using the AMSEA in covariance
form (23) - (31). We considered an MIMO channel sys-
tem with two inputs and three outputs, and assumed
that the length of the channel is three (K = 3), the
length of the equalizer is six (L = 6), and two source
signals are the 4-PSK and the 8-PSK signals. As a
measure of performance, we use the multichannel in-
tersymbol interference (MISI). The last matrix H(2)

of the impulse response of the channel was varied by
approximately 3 times at discrete time t=10,000. The
values of and were chosen as =0.999 and =0.05,
respectively. Figure 1 shows the result for the time-
variant system obtained by using 50,000 data samples.
The details of the simulation results will be shown in
the conference.

6. CONCLUSIONS

We have investigated multichannel blind deconvolution
of FIR or IIR systems using the multichannel super-
exponential method. We have shown some proper-
ties of the correlation matrices relevant to the multi-
channel super-exponential method and then presented
a pseudo-inversion lemma. Based on these results, we
have proposed two types of adaptive multichannel super-

Figure 1: Performance of AMSEA in covariance form.

exponential algorithms (AMSEA’s), the one in covari-
ance form and the other in QR-factorization form.
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