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ABSTRACT

This paper presents an eigenvector algorithm (EVA) derived
from a criterion using reference signals, in which the EVA is
applied to the blind source separation (BSS) of instantaneous
mixtures. The proposed EVA works such that source signals
are simultaneously separated from their mixtures. This is a
new result, which has not been clarified by the conventional
researches. Simulation results show the validity of the pro-
posed EVA.

1. INTRODUCTION

This paper deals with the blind source separation (BSS) prob-
lem for a multiple-input and multiple-output (MIMO) static
system driven by independent source signals. To solve this
problem, reference signals are used. Researches on the BSS
problem by using the idea of reference signals, to our best
knowledge, have been made by Jelonnek et al. [4, 5] and Adib
et al. [1]. Jelonnek et al. have proposed an eigenvector algo-
rithm (EVA) derived from a criterion using reference signals,
in order to solve blind equalization of single-input and single-
output (SISO) systems. Adib et al. have proposed contrast
functions for solving the BSS problem, in which reference
signals are included into the contrast functions, but they have
not derived explicit algorithms for solving the BSS problem
from the contrast functions.

In this paper, the EVA derived from a criterion with ref-
erence signals is used for solving the BSS problem of MIMO
static systems, and then it will be shown that the EVA works
such that source signals are simultaneously separated from
their mixtures. Simulation results show that the proposed
EVA works successfully to solve the BSS problem and thanks
to its property, provides better performances, compared with
the super-exponential algorithm using deflation methods.

2. PROBLEM FORMULATION

Throughout this paper, let us consider the following MIMO
static system with n inputs and m outputs:

y(t) = Hs(t) + n(t), (1)
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Fig. 1. The composite system of an unknown system and a
filter, and reference system.

where y(t) represents an m-column output vector called the
observed signal, s(t) represents an n-column input vector
called the source signal, H is an m × n matrix, n(t) rep-
resents an m-column noise vector. It can be regarded as a
linear mixture model with additive noise.

To achieve the blind source separation (BSS) for the sys-
tem (1), the following n filters, which are m-input single-
output (MISO) static systems driven by the observed signals,
are used:

zl(t) = wT
l y(t), l = 1, 2, · · · , n, (2)

where zl(t) is the lth output of the filter, wl = [wl1,wl2,· · · ,wlm]T

is an m-column vector representing the m coefficients of the
filter. Substituting (1) into (2), we obtain

zl(t) = wT
l Hs(t) + wT

l n(t)

= gT
l s(t) + wT

l n(t), l = 1, 2, · · · , n, (3)

where gl = [gl1,gl2,· · · ,gln]T := HT wl is an n-column vec-
tor. The BSS problem considered in this paper can be formu-
lated as follows: Find n filters wl’s denoted by w̃l’s satisfying
the following condition, without the knowledge of H .

g̃l = HT w̃l = δ̃l, l = 1, 2, · · · , n, (4)

where δ̃l is an n-column vector whose elements δ̃lr (r = 1,2,
· · · ,n) are equal to zero expect for ρlth element, that is, δ̃lr =
clδ(r − ρl), r = 1,2,· · · ,n. Here, δ(t) is the Kronecker delta
function, cl is a number standing for a scale change, and ρl is
one of integers {1, 2, · · · , n} such that the set {ρ1,ρ2,· · · ,ρn}
is a permutation of the set {1,2,· · · ,n}.

To solve the BSS problem, we put the following assump-
tions on the system and the source signals.

A1) The matrix H in (1) is an m × n (m ≥ n) matrix
and has full column rank.

A2) The input sequence {s(t)} is a zero-mean, non-Gaussian
vector stationary process whose element processes {si(t)},
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i = 1, 2, · · · , n, are mutually statistically independent and
have nonzero variance, σ2

si
= E[s2

i (t)] �= 0 and nonzero fourth-
order cumulants, γi defined as

γi = cum{si(t), si(t), si(t), si(t)} �= 0 for i = 1, 2, · · · , n, (5)

A3) The noise signal sequence {n(t)} is a zero-mean,
Gaussian vector stationary process whose element processes
{ni(t)}, i = 1,2,· · · ,m, are mutually statistically independent.

A4) The two vector sequences {n(t)} and {s(t)} are mu-
tually statistically independent.

It is assumed for the sake of simplicity in this paper that
all the signals and all the systems are real-valued.

3. EIGENVECTOR ALGORITHM (EVA) WITH
REFERENCE SIGNALS FOR MIMO STATIC

SYSTEMS

In this section, we assume that there is no noise n(t) in the
output y(t), and then analyze eigenvector algorithms for MIMO
static systems. Under this assumption, to solve the BSS prob-
lem, the following cross-cumulant between zl(t) and a refer-
ence signal x(t) (see Fig. 1) is defined:

Czx = cum{zl(t), zl(t), x(t), x(t)} (6)

where the reference signal x(t) is given by fT y(t) = fT Hs(t)
= aT s(t) (aT := fT H is a vector whose elements are a1,a2,
· · · ,an), using an appropriate filter f . The filter f is called
a reference system. Moreover we define the constraint σ2

zl

= σ2
sρl

, where σ2
zl

and σ2
sρl

denote the variances of the out-
put zl(t) and a source signal sρl

(t), respectively. Adib, et
al. [1] have shown that the BSS can be achieved by maxi-
mizing |Czx| in (6) under the constraint, but they have not
proposed any algorithm for achieving this idea. In the single-
input case, Jelonnek et al. [4, 5] have shown that by the La-
grangian method, the maximization of |Czx| under σ2

zl
= σ2

sρl

leads to a closed-form expression as the following generalized
eigenvector problem:

Cyxwl = λRwl (7)

Then they utilize the facts that Czx and σ2
zl

can be expressed
in terms of the vector wl as, respectively,

Czx = wT
l Cyxwl, (8)

σ2
zl

= wT
l Rwl, (9)

where Cyx is a matrix whose (i,j) element is calculated by
cum{yi(t), yj(t), x(t), x(t)} and R = E[y(t)yT (t)] is the co-
variance matrix of m-column vector y(t). Moreover, they
have shown that the eigenvector corresponding to the maxi-
mum eigenvalue of R†Cyx becomes the solution of the blind
equalization problem in [4, 5], which is referred to as an eigen-
vector algorithm (EVA). However, the algorithm proposed by

Jelonnek et al. is for SISO or SIMO infinite impulse response
channel. Therefore, we want to show how the eigenvector al-
gorithm (7) works for the BSS in the case of the MIMO static
system. To this end, we use the following equalities:

R = HΣHT , (10)

Cyx = HΛHT , (11)

where Σ is a diagonal matrix whose elements are σ2
si

, i =
1,2,· · · ,n and Λ is a diagonal matrix whose elements are a2

i γi

(i = 1,2,· · · ,n). Then we obtain the following theorem.

Theorem 1 Suppose the values a2
i γi/σ

2
si

, i = 1,2,· · · ,n are
all nonzero and distinct. If the noise n(t) is absent in (1), then
the n eigenvectors corresponding to n nonzero eigenvalues
of R†Cyx become the vectors w̃l

′s satisfying (4), where the
symbol † denotes the pseudo-inverse operation of a matrix.

Proof: Based on (7), we consider the following eigenvec-
tor problem:

R†Cyxwl = λwl. (12)

Then, from (10) and (11), (12) becomes

HT†
Σ

−1H†HΛHT wl = λwl. (13)

Since H has full column rank, using a property of the pseudo-
inverse operation ([8], p. 433), we obtain

HT†
Σ

−1
ΛHT wl = λwl. (14)

Multiplying (14) by HT from left side and using a property
of the pseudo-inverse operation again, (14) becomes

Σ
−1

ΛHT wl = λHT wl. (15)

By noting that Σ
−1

Λ is a diagonal matrix whose elements,
a2

i γi/σ
2
si

, i = 1,2,· · · ,n, are all nonzero and distinct, if gl :=
HT wl �= 0, then the eigenvectors gl obtained from (15) be-
come the vectors g̃l satisfying (4). Namely, the n eigenvec-
tors wl corresponding to n nonzero eigenvalues of R†Cyx

obtained from (12) become the vectors w̃l satisfying (4).

Remark 1 In order to use Theorem 1, the reference signal
x(t) contains nonzero contributions ai

′s from all source sig-
nals si(t)

′s. This is the case except for pathological cases.
From Theorem 1, it can be seen that by all the n eigenvec-
tors corresponding to n nonzero eigenvalues of R†Cyx, all
source signals can be separated from the output y(t). This is
a novel result which has not been shown in the conventional
researches. Moreover, it can be seen from (15) that even if
the fourth-order cumulants γi have different signs from each
other, the vector w̃l satisfying (4) can be obtained. This fact
will be confirmed by computer simulations in Section 5.

Remark 2 In this section, we assume that there are no noises
in the output signals. We are able to show such an eigenvector
algorithm that the solutions (4) can be obtained, even if the
noise n(t) is presented in the output y(t). On the details of
this eigenvector algorithm, see [7].
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4. DISCUSSION

In this section, let us compare the proposed EVA with the
well-known method obtained by the following constrained
maximization problem [9]:

Maximize |Cz| = |cum{zl(t), zl(t), zl(t), zl(t)}|,

subject to σ2
zl

= σ2
sρl

. (16)

Then, by the similar way in (8), Cz can be expressed in terms
of the vector wl as

Cz = wT
l Cyzwl, (17)

where Cyz is an m × m matrix whose (r1,r2)th element is
cum{yr1

(t), yr2
(t), zl(t), zl(t)}, which can be expressed as

Cyz = HΛ̇HT , (18)

where Λ̇ is a diagonal matrix with the diagonal elements g2
liγi,

i = 1,2,· · · ,n.
From (17), under the condition that zl(t)

′s in Cyz are
fixed, by the Lagrangian method, (16) leads to the following
generalized eigenvector problem:

Cyzwl = λRwl. (19)

This equation (19) is similar to (7), but by modifying (19)
with the similar way to (12) through (15), one can recognize
the difference between (7) and (19). By the similar way to
(12) through (15), (19) can be modified as

Σ
−1

Λ̇HT wl = λHT wl. (20)

Since the diagonal elements of Λ̇ include gli, i = 1,2,· · · ,n,
which are the elements of the vector gl, if the vector w̃l satis-
fying (4) is obtained by solving (20), the diagonal elements of
Σ

−1
Λ̇ become zero except for ρlth diagonal element, that is,

Σ
−1

Λ̇ = diag{0, · · · , 0, g2
lρl

γρl
/σρl

(ρlth element),0,· · · ,0}.
This means that if the algorithm (19) is iteratively used to esti-
mate the vector w̃l in (4) with high accuracy, only one source
signal can be separated from y(t). As an iterative algorithm
derived from (19), there exists the following two-step iterative
algorithm with respect to wl:

w
[1]
l = R†dl, (21)

wl = w
[1]
l /

√
w

[1]T
l Rw

[1]
l , (22)

where dl := (1/λ)Cyzwl, which is assumed to be calculated
by (26). This is nothing less than the super-exponential algo-
rithm (SEA) [10]. Indeed, the SEA is used to separate source
signals one by one [3], that is, deflation methods are need to
separate all source signals from their mixtures. On the other
hand, the proposed EVA (7) can work such that all source
signals are separated simultaneously from y(t), even if the
iterative calculations are carried out, because the diagonal el-
ements of Λ are of fixed values. This is a big difference be-
tween the algorithm (21)-(22) and the proposed EVA.

5. COMPUTER SIMULATIONS

To demonstrate the validity of the proposed method, many
computer simulations were conducted. Some results are shown
in this section. The unknown system H was set to be a 4 × 3
matrix, that is, a three-input four-output system:

H =

⎡
⎢⎢⎣

1.0 0.4 0.6
0.7 1.0 −0.3
0.2 −0.5 1.0

−0.45 0.25 0.7

⎤
⎥⎥⎦ . (23)

The three inputs si(t) (i = 1,2,3) of the system H were two
sub-Gaussian signals and one super-Gaussian signal, in which
each sub-Gaussian signal takes one of two values, −1 and
1 with equal probability 1/2 and the super-Gaussian signal
takes −2, 2, and 0 with probabilities 1/8, 1/8, and 6/8, respec-
tively. The filter f making a reference signal was set to be
f = [1,0,0,0]T . The Gaussian noises ni(t) (i = 1,2,3,4) with
their variances σ2

ni
were included in the outputs yi(t) at var-

ious SNR levels. The SNR was considered at the output of
the system H . As a measure of performance, we used the
multichannel intersymbol interference (MISI) defined in [6].

For comparison, the SEA given by (21) and (22) was used.
Fig. 2 (a), (b), and (c) show the results obtained by respec-
tively first, second, and third iterations, using the EVA and
the SEA. In each figure, the SNR levels were taken from 5 dB
to 40 dB (see horizontal axis) and MISI

′s shown in vertical
axes were the average of the performance results obtained by
100 independent Monte Carlo runs. For each iteration, using
three kinds of data samples, t1 = 1,000 (case (i)), 2,500 (case
(ii)), and 5,000 (case (iii)), the matrix Cyx in the EVA, the
matrix R in the EVA and SEA, and the vector dl in the SEA
were estimated by the following equations, respectively.

Cyx(t) := β1Cyx(t − 1) + (1 − β1){x
2(t)y(t)yT (t)

− 2ṽx1(t)x(t)yT (t) − ṽx2(t)y(t)yT (t)}, (24)

R(t) := β2R(t − 1) + (1 − β2)y(t)yT (t) (25)

dl(t) := β1dl(t − 1) + (1 − β1)(z
3
l (t)y(t)

− 3ṽl(t)zl(t)y(t)), l = 1, 2, 3, 4, (26)

where ṽx1(t), ṽx2(t), and ṽl(t) are the following moving av-
erages defined by

ṽx1(t) := β2ṽx1(t − 1) + (1 − β2)x(t)y(t), (27)

ṽx2(t) := β2ṽx2(t − 1) + (1 − β2)x
2(t), (28)

ṽl(t) := β2ṽl(t − 1) + (1 − β2)z
2
l (t), l = 1, 2, 3, 4. (29)

The parameter β1 was set to be (1 - 1/t1) for each data sam-
ple set. The parameter β2 was set to be 0.995 for first iteration
and 0.998 for second and third iterations, in which this selec-
tion rule of β2 was applied to all data sample set and was best
rule for solving this BSS problem in our computer simula-
tion. Here, when the equations (24) -(29) were used, the first
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Fig. 2. The average performances of the EVA and the SEA
with varying the SNR level, in the three cases of (i) 1000 sam-
ples, (ii) 2500 samples, (iii) 5000 samples.

iteration started with appropriate initial values, and the sec-
ond and third iterations started with the initial values obtained
from previous iteration. As a deflation method for the SEA,
which is needed to separate all source signals, Gram-Schmidt
type deflation method was adopted [2]. In the calculation of
eigenvectors in the EVA, C†

yxR was used to obtain the eigen-
vectors with high accuracy.

From Fig. 2, it can be seen that the EVA gives better
performances than the SEA. This means that if Cyx and R

are estimated with high accuracy, the EVA gives good results
from first iteration (see, e.g., Fig. 2 (a)). On the other hand,
the SEA does not provide such results, because the SEA needs
deflation methods to obtain all source signals. However, this
tendency is shown for the case where the SNR level is high
and the number of iterations is small. As the number of it-
erations increases, this tendency disappears (see Fig. 2 (c)).
Therefore we conclude that for the case where the SNR level
is high and the number of iterations is small, the proposed
EVA gives better performances, compared with the conven-
tional algorithms which need deflation methods.

6. CONCLUSIONS

We have proposed an EVA for solving the BSS problem. By
using reference signals, the proposed EVA is capable for sepa-
rating source signals simultaneously from their mixtures. There
exists a case that this point becomes a very attractive property
for solving the BSS problems of MIMO systems, compared
with the conventional algorithms which need deflation meth-
ods. Computer simulations have demonstrated the validity of
the proposed EVA.
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