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Abstract— Recently we have developed an eigenvector method
(EVM) which can achieve the blind deconvolution (BD) for
MIMO systems. The attractive features of the proposed algorithm
are that the BD can be achieved by calculating the eigenvectors
of a matrix and by using reference signals. However, the perfor-
mance accuracy of the EVM depends highly on the computational
result of the eigenvectors. In this paper, by modifying the EVM,
we propose an algorithm which can achieve the BD without
calculating the eigenvectors. Then the pseudo-inverse which is
needed to carry out the BD is calculated by our proposed matrix
pseudo-inversion lemma. Simulation results will be presented for
showing the validity of the proposed method.

I. INTRODUCTION

In this paper, we deal with a blind deconvolution (BD)
problem for a multiple-input and multiple-output (MIMO)
infinite-impulse response (IIR) channels. A large number of
methods for solving the BD problem have been proposed until
now (see [1], and reference therein). In order to solve the BD
problem, this paper focuses on the eigenvector method (EVM).

The first proposal of the EVM was done by Jelonnek et
al. [4]. They have proposed the EVM for solving blind equal-
ization (BE) problems of single-input single-output (SISO)
channels and single-input multiple-output (SIMO) channels.
The most attractive feature of the EVM is that its algorithm can
be derived from a closed-form solution using reference signals.
Then, a generalized eigenvector problem can be formulated
and the eigenvector calculation is carried out in order to solve
the BE problem. Owing to the property, differently from the
algorithms derived from steepest descent methods, the EVM
does not need many iterations to achieve the BE, but works
so as to solve the BE problem with one iteration. Recently,
we extended the EVM to the case of MIMO-IIR channels
[6]. Then we proved that the proposed EVM can work so

as to recover all source signals from their mixtures with one
iteration. However, in the EVM, its performance accuracy
depends highly on the computational result of the eigenvectors.

In this paper, we modify the EVM and then an algorithm
for solving the BD is proposed, in which the proposed algo-
rithm can be carried out without calculating the eigenvectors.
Namely, the proposed algorithm can achieve the BD with as
less computational complexity as possible, compared with the
conventional EVMs.

The present paper uses the following notation: Let Z denote
the set of all integers. Let C denote the set of all complex
numbers. Let Cn denote the set of all n-column vectors
with complex components. Let Cm×n denote the set of all
m × n matrices with complex components. The superscripts
T , ∗, and H denote, respectively, the transpose, the complex
conjugate, and the complex conjugate transpose (Hermitian) of
a matrix. The symbols block-diag{· · ·} and diag{· · ·} denote
respectively a block diagonal and a diagonal matrices with the
block diagonal and the diagonal elements {· · ·}. The symbol
cum{x1,x2,x3,x4} denotes the fourth-order cumulant of xi’s.
Let i = 1, n stand for i = 1, 2, · · · , n.

II. PROBLEM FORMULATION AND ASSUMPTIONS

We consider a MIMO system with n inputs and m outputs
as described by

y(t) =
∑∞

k=−∞H(k)s(t− k) + n(t), t ∈ Z, (1)

where s(t) is an n-column vector of input (or source) signals,
y(t) is an m-column vector of system outputs, n(t) is an m-
column vector of Gaussian noises, and {H(k)} is an m × n
impulse response matrix sequence. The transfer function of
the system is defined by H(z) =

∑∞
k=−∞ H(k)zk, z ∈ C.
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To recover the source signals, we process the output signals
by an n×m deconvolver (or equalizer) W (z) described by

v(t) =
∑∞

k=−∞W (k)y(t− k)

=
∑∞

k=−∞G(k)s(t− k) +
∑∞

k=−∞W (k)n(t− k), (2)

where {G(k)} is the impulse response matrix sequence of
G(z) := W (z)H(z), which is defined by G(z) =

∑∞
k=−∞

G(k)zk, z ∈ C. The cascade connection of the unknown
system and the deconvolver is illustrated in Fig. 1.

Here, we put the following assumptions on the system, the
source signals, the deconvolver, and the noises.
A1) The transfer function H(z) is stable and has full column
rank on the unit circle |z| = 1, where the assumption A1)
implies that the unknown system has less inputs than outputs,
i.e., n < m, and there exists a left stable inverse of the
unknown system.
A2) The input sequence {s(t)} is a complex, zero-mean and
non-Gaussian random vector process with element processes
{si(t)}, i = 1, n being mutually independent. Each element
process {si(t)} is an i.i.d. process with a variance σ2

si �= 0
and a nonzero fourth-order cumulant γi �= 0 defined as

γi = cum{si(t), si(t), s∗i (t), s∗i (t)} �= 0. (3)

A3) The deconvolver W (z) is an FIR system, that is, W (z) =∑L2

L1
W (k)zk, where the length L := L2−L1+1 is taken to be

sufficiently large so that the truncation effect can be ignored.
A4) The noise sequence {n(t)} is a zero-mean, Gaussian
vector stationary process whose component processes {nj(t)},
j = 1,m have nonzero variances σ2

nj
, j = 1,m.

A5) The two vector sequences {n(t)} and {s(t)} are mutually
statistically independent.

Under A3), the impulse response {G(k)} of the cascade
system is given by

G(k) :=
∑L2

τ=L1
W (τ)H(k−τ), k ∈ Z, (4)

In a vector form, (4) can be written as

g̃i = H̃w̃i, i = 1, n, (5)
where g̃i is the column vector consisting of the ith output
impulse response of the cascade system defined by g̃i :=
[gT

i1, g
T
i2, · · · , gT

in]
T ,

gij := [· · · , gij(−1), gij(0), gij(1), · · ·]T , j = 1, n (6)

where gij(k) is the (i, j)th element of matrix G(k), and w̃i

is the mL-column vector consisting of the tap coefficients
(corresponding to the ith output) of the deconvolver defined
by w̃i :=

[
wT

i1,w
T
i2, · · · ,wT

im

]T ∈ CmL,

wij := [wij(L1), wij(L1 + 1), · · · , wij(L2)]
T ∈ CL, (7)

j = 1,m, where wij(k) is the (i, j)th element of matrix W (k),
and H̃ is the n×m block matrix whose (i, j)th block element
Hij is the matrix (of L columns and possibly infinite number
of rows) with the (l, r)th element [Hij ]lr defined by [Hij ]lr
:= hji(l − r), l = 0,±1,±2, · · ·, r=L1, L2, where hij(k) is
the (i, j)th element of the matrix H(k).

In the MIMO deconvolution problem, we want to adjust
w̃i’s (i = 1, n) so that

y(t)s(t) v(t)

n(t)

H(z)

x(t)f T(z) reference
signal

output
signal

W(z)

G(z)

a(z)

Fig. 1. The composite system of an unknown system and a deconvolver, and
a reference system (The case of single reference).

[g̃1, · · · , g̃n] = H̃ [w̃1, · · · , w̃n] = [δ̃1, · · · , δ̃n]P , (8)

where P is an n×n permutation matrix, and δ̃i is the n-block
column vector defined by δ̃i := [δTi1,δTi2,. . . ,δTin]

T , i = 1, n, δij
:= δ̂i, for i =j, otherwise (· · · , 0, 0, 0, · · ·)T . Here, δ̂i is the
column vector (of infinite elements) whose rth element δ̂i(r)
is given by δ̂i(r) = diδ(r − ki), where δ(t) is the Kronecker
delta function, di is a complex number standing for a scale
change and a phase shift, and ki is an integer standing for a
time shift.

III. THE CONVENTIONAL EIGENVECTOR ALGORITHM

Jelonnek et al. [4] have shown in the single-input case that
from the following problem, that is,

Maximize Dvix = cum{vi(t), v∗i (t), x(t), x∗(t)}
under σ2

vi
= σ2

sρi
, (9)

a closed-form solution expressed as a generalized eigenvector
problem can be led by the Lagrangian method, where σ2

vi
and

σ2
sρi

denote the variances of the output vi(t) and a source
signal sρi

(t), respectively, ρi is one of integers {1, 2, · · · , n}
such that the set {ρ1, ρ2,· · ·,ρn} is a permutation of the set {1,
2,· · ·,n}, vi(t) is the ith element of v(t) in (2), and the refer-
ence signal x(t) is given by fT (z)y(t) using an appropriate
filter f(z) (see Fig. 1). The filter f(z) is called a reference
system. Let a(z) := HT (z)f(z) = [a1(z),a2(z),· · ·,an(z)]T ,
then x(t) = fT (z)H(z)s(t) = aT (z)s(t). The element ai(z)
of the filter a(z) is defined as ai(z) =

∑∞
k=−∞ ai(k)z

k

and the reference system f(z) is an m-column vector whose
elements are fj(z) =

∑L2

k=L1
fj(k)z

k, j = 1,m.
In our case, Dvix and σ2

vi
can be expressed in terms of

the vector w̃i as, respectively, Dvix = w̃H
i B̃w̃i and σ2

vi

= w̃H
i R̃w̃i, where B̃ is the m × m block matrix whose

(i, j)th block element Bij is the matrix with the (l, r)th
element [Bij]lr calculated by cum{y∗i (t-L1-l+1), yj(t-L1-r+
1), x∗(t), x(t)} (l, r = 1, L) and R̃ = E[ỹ∗(t)ỹT (t)] is the
covariance matrix of m-block column vector ỹ(t) defined by

ỹ(t) :=
[
yT
1 (t),y

T
2 (t), · · · ,yT

m(t)
]T ∈ CmL, (10)

where yj(t) := [yj(t-L1), yj(t-L1-1),· · ·,yj(t-L2)]T ∈ CL,
j = 1,m. It follows from (10) that ỹ(t) is expressed as
ỹ(t) = Dc(z)y(t), where Dc(z) is an mL × m converter
(consisting of m identical delay chains each of which has L
delay elements when L1 = 1) defined by Dc(z) := block-
diag{dc(z),· · ·,dc(z)} with m diagonal block elements all
being the same L-column vector dc(z) defined by dc(z) =
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[zL1 ,· · ·,zL2 ]T . Therefore, by the similar way to as in [4], the
maximization of |Dvix| under σ2

vi
= σ2

sρi
leads to the following

generalized eigenvector problem;

B̃w̃i = λiR̃w̃i. (11)

Moreover, Jelonnek et al. have shown in [4] that the eigenvec-
tor corresponding to the maximum magnitude eigenvalue of
R̃†B̃ becomes the solution of the blind equalization problem,
which is referred to as an eigenvector algorithm (EVA). It has
been also shown in [6] that the BD for MIMO-IIR systems
can be achieved with the eigenvectors of R̃†B̃, using only one
reference signal. Note that since Jelonnek et al. have dealt with
SISO-IIR systems or SIMO-IIR systems, the constructions of
B̃, w̃i, and R̃ in (11) are different from those proposed in
[4].

Castella et al. [2] have shown that from (9), a BD can be
iteratively achieved by using xi(t) = w̃iỹ(t) (i = 1, n) as
reference signals (see Fig. 2), where the number of reference
signals corresponds to the number of source signals and w̃i

is an eigenvector obtained by R̃†B̃i in the previous iteration,
where B̃i represents B̃ in (11) calculated by xi(t) = w̃iỹ(t).
Namely, they considered the following equation;

R̃
†
B̃w̃i = λiw̃i. (12)

Then a deflation method was used to recover all source signals.
However, the EVM proposed by Castella et al. requires the
calculation of the eigenvectors of the matrix R̃†B̃i to achieve
the BD.

y(t)s(t) v(t)

n(t)

H(z)

x1(t)w1
T

reference
signals

output
signal

W(z)

G(z)

xn(t)wn
T

y(t)

Dc(z)

Fig. 2. The composite system of an unknown system and a deconvolver, and
a reference system (The case of multiple reference system).

IV. THE PROPOSED ALGORITHM

Here, the equation (12) can be interpreted as follows.
Suppose that the value w̃i in the left-hand side of (12) is
an eigenvector obtained by R̃†B̃i in the previous iteration.
Also, let d̃i denote B̃iw̃i. Then (12) can be expressed as

w̃i =
1

λi
R̃

†
d̃i, i = 1, n. (13)

Differently from the EVM in [2], (13) means that w̃i is
modified iteratively by the value of the right-hand side of (13)
without calculating the eigenvectors of R̃†B̃i, where w̃i in
both xi(t) and d̃i is the value of the left-hand side of (13) in
the previous iteration. The scalar λi is fixed to be 1, but w̃i

obtained by (13) should be normalized at each iteration, that
is,

w̃i :=
w̃i√

w̃H
i R̃w̃i

, i = 1, n. (14)

It can be seen that the iterative algorithm (13) is nothing
but an iterative procedure of the SEM [7]. Therefore, our
proposed algorithm for achieving the BD is that the vector
w̃i is modified by using the value R̃†d̃i in (13), and then the
modified vector, that is, w̃i in the left-hand side of (13) is
normalized by (14).

Here, the calculation of R̃† is implemented by using the fol-
lowing algorithm based on the matrix pseudo-inversion lemma
proposed in [9]. The reason is that in the case that the pseudo-
inverse is calculated using data block, the convergence speed
is increased and the computational complexity is reduced,
compared with the conventional pseudo-inverse algorithms,
for example, the built-in function ”pinv” in MATLAB [10].
Therefore, in order to provide a recursive formula based on
block data for time-updating of pseudo-inverse, the block
index k is defined, and then R̃ and R̃† are described as R̃(k)
and P (k), respectively, where the k-th block of data is defined
as

t = kl + i, i = 1, l − 1, k ∈ Z, (15)

the parameters l and t denote the block length and the original
discrete (or sample) time. The matrix R̃(k) is obtained by

R̃(k) = (1− αk)R̃(k − 1) + αkY
∗(k)Y T (k), (16)

where

Y (k) = [ỹ{(k − 1)l}, ỹ{(k − 1)l + 1}, · · · ,
ỹ{(k − 1)l + l − 1}] ∈ CmL×l,(17)

and αt is a positive number close to, but greater than zero,
which accounts for some exponential weighting factor or
forgetting factor [3]. Moreover, the following parameters are
defined;

Y (k) =
√
αtỸ

∗
(k), (18)

Y 1(k) = R̃(k − 1)P (k − 1)Y (k), (19)

Y 2(k) = {I − R̃(k − 1)P (k − 1)}Y (k). (20)

Then the pseudo-inverse P (k) can be explicitly expressed, as
follows:

P (k) = P †
B(k)− P †

B(k) [Y 1(k),Y 2(k)]

P−1
D (k) [Y 1(k),Y 2(k)]

H
P †

B(k), (21)

where P †
B(k) and P−1

D (k) are respectively defined by

P †
B(k) :=

1

1− αk
[P (k − 1)− P (k − 1)Y 1(k)P

−1
A (k)

Y H
1 (k)P (k − 1)] +

(
Y H

2 (k)
)†

Y †
2(k), (22)

and

P−1
D (k) :=

[
−Δ−1(k)P 2(k) Δ−1(k)

I +E1(k)Δ
−1(k)E2(k) −E1(k)Δ

−1(k)

]
(23)
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with
Δ(k) := I −E2(k)E1(k), (24)

where

E1(k) = BH
1 (k)P †

B(k)B1(k), (25)

E2(k) = BH
2 (k)P †

B(k)B2(k). (26)

We treat P (k) as R̃†, and w̃i is iteratively modified using (13) and
(14), where λi in (13) is assumed to be fixed to 1 and d̃i := B̃iw̃i

in (13) is estimated by using Y (k).

V. SIMULATION RESULTS

To demonstrate the proposed algorithm, we considered a MIMO
system H(z) with two inputs (n = 2) and three outputs (m = 3),
and assumed that the system H(z) is FIR and the length of channel
is three, that is H(k)’s in (1) were set to be

H(z) =

2∑
k=0

H(k)zk =

[
1.00 + 0.15z + 0.10z2 0.65 + 0.25z + 0.15z2

0.50− 0.10z + 0.20z2 1.00 + 0.25z + 0.10z2

0.60 + 0.10z + 0.40z2 0.10 + 0.20z + 0.10z2

]
.

(27)

The source signals s1(t) and s2(t) were a sub-Gaussian signal which
takes one of two values, −1 and 1 with equal probability 1/2. The
parameters L1 and L2 in W (z) were set to be 0 and 9, respec-
tively. As a measure of performances, we used the multichannel
intersymbol interference (MISI) [8], which was the average of 50
Monte Carlo runs. In each Monte Carlo run, using 300 data samples,
w̃i is modified by (13) and (14), and the total number of modification
times is 10. The block length l is set to be 2. For obtaining the pseudo-
inverse of the correlation matrix, the initial values of R̃, d̃i and P
were estimated using 30 data samples. The value of αk was chosen
as αk = 1

kl
for each k.

The proposed method using "pinv"
The proposed method using "mpinvl"

The EVM using "pinv"
The EVM using "mpinvl"-2

-6

-8

-10

-12

-4

0

Iteration time
1 2 3 4 5 6 7 8 9 10

Fig. 3. The performances of the proposed algorithm and the conventional
methods.

Figure 3 shows the results obtained by the proposed algorithm
and the conventional methods. As the conventional method, we
selected the EVM proposed by Castella et al.. Then, the pseudo-
inverse of R in (12) was calculated by the built-in function ”pinv” in
MATLAB and our proposed matrix pseudo-inversion lemma, denoted
by ”mpinvl”. From Fig. 3, one can see that the performance of the
proposed algorithm is better than that of the conventional EVMs.

Table 1 shows the average of the execution times for the proposed
method and the conventional EVM, using a personal computer (Win-
dows machine) with 2.59GHz processor and 2GB main memories.
From the table 1, one can see that the execution time of the proposed
method is longer than that of the conventional EVM. However, since
the difference is very small and the performance of the conventional
EVM is worse than the proposed algorithm, then we conclude that
the proposed algorithm is more suitable for solving the BD problem
than the conventional EVM.

TABLE I

COMPARISON OF THE AVERAGES OF THE EXECUTION TIMES.

Methods times [sec]

The proposed method using ”pinv” 0.7580
The proposed method ”mpinvl” 0.7011

The EVM using ”pinv” 0.5963
The EVM using ”mpinvl” 0.5829

VI. CONCLUSION

In this paper, by modifying the EVM, we have proposed an algo-
rithm which can achieve the BD without calculating eigenvectors. It
can be seen that our proposed algorithm provides better performance
than the conventional EVM, but the average of execution time of
the proposed algorithm is a little bit longer than the conventional
EVM. Although there exists such a trade-off, we conclude that our
proposed method is more useful for solving the BD problem, because
we consider that the performance accuracy is most important for
achieving the BD.
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