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Abstract— This paper presents eigenvector algorithms (EVAs)
for blind deconvolution (BD) of multiple-input multiple-output
infinite impulse response (MIMO-IIR) channels (convolutive
mixtures). Using the idea of reference signals, the EVA is derived.
Differently from the conventional researches on EVAs, one of the
novel points of the paper is that the EVA using any reference
signal is applied to the BD problem of the MIMO-IIR system,
and then the validity of the EVA is shown.

I. INTRODUCTION

In this paper, we deal with a blind deconvolution (BD) prob-
lem for a multiple-input and multiple-output (MIMO) infinite-
impulse response (IIR) channels. To solve this problem, we
use eigenvector algorithms (EVAs) [4], [8]. The first proposal
of the EVA was done by Jelonnek et al. [4]. They have pro-
posed the EVA for solving blind equalization (BE) problems
of single-input single-output (SISO) channels or single-input
multiple-output (SIMO) channels. In [8], several procedures
for the blind source separation (BSS) of instantaneous mix-
tures, using the generalized eigenvalue decomposition, have
been introduced. Recently, the authors have proposed an EVA
which can solve blind source separation (BSS) problems in the
case of MIMO static systems (instantaneous mixtures) [5].

The proposed EVA, based on the idea in [5], is derived by
using reference signals. Researches using the idea of reference
signals to solve blind signal processing (BSP) problems, such
as the BD, the BE, the BSS, and so on, to our best knowledge,
have been made by Jelonnek et al. (e.g., [4]), Adib et al. (e.g.,
[1]), and Rhioui [9]. Jelonnek et al. have shown in the single-
input case that by the Lagrangian method, the maximization
of a contrast function leads to a closed-form expressed as
a generalized eigenvector problem, which is referred to as
an eigenvector algorithm (EVA). Adib et al. have shown
that the BSS for instantaneous mixtures can be achieved by
maximizing a contrast function, but they have not proposed
any algorithm for achieving this idea. Rhioui et al. have
proposed quadratic MIMO contrast functions for the BSS with
convolutive mixtures. In their method, the number of reference
signals corresponds to the number of source signals which
can be extracted. Moreover, they claimed that as the reference
signal, it is a practical valid choice to choose a signal obtained
by whitening the outputs of the MIMO convolved system.
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Fig. 1. The composite system of an unknown system and a deconvolver, and
a reference system.

In this paper, under the assumption that any reference signal
is used, we want to show how the EVA works for the BD of
the MIMO-IIR channel (1). Simulation results are presented
to show the effectiveness of the proposed EVA.

The present paper uses the following notation: Let Z denote
the set of all integers. Let C denote the set of all complex
numbers. Let Cn denote the set of all n-column vectors
with complex components. Let Cm×n denote the set of all
m × n matrices with complex components. The superscripts
T , ∗, and H denote, respectively, the transpose, the complex
conjugate, and the complex conjugate transpose (Hermitian) of
a matrix. The symbols block-diag{· · ·} and diag{· · ·} denote
respectively a block diagonal and a diagonal matrices with the
block diagonal and the diagonal elements {· · ·}. The symbol
cum{x1,x2,x3,x4} denotes a fourth-order cumulant of xi’s.
Let i = 1, n stands for i = 1, 2, · · · , n.

II. PROBLEM FORMULATION AND ASSUMPTIONS

We consider an MIMO channel with n inputs and m outputs
as described by

y(t) =
∑∞

k=−∞H(k)s(t − k) + n(t), t ∈ Z, (1)

where s(t) is an n-column vector of input (or source) signals,
y(t) is an m-column vector of channel outputs, n(t) is an m-
column vector of Gaussian noises, and {H(k)} is an m × n
impulse response matrix sequence. The transfer function of
the channel is defined by H(z) =

∑∞
k=−∞ H(k)zk, z ∈ C.

To recover the source signals, we process the output signals
by an n × m deconvolver (or equalizer) W (z) described by

z(t) =
∑∞

k=−∞W (k)y(t − k)

=
∑∞

k=−∞G(k)s(t − k) +
∑∞

k=−∞W (k)n(t − k), (2)

where {G(k)} is the impulse response matrix sequence of
G(z) := W (z)H(z), which is defined by G(z) =

∑∞
k=−∞

G(k)zk, z ∈ C. The cascade connection of the unknown
system and the deconvolver is illustrated in Fig. 1.
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Here, we put the following assumptions on the channel, the
source signals, the deconvolver, and the noises.
A1) The transfer function H(z) is stable and has full column
rank on the unit circle |z| = 1, where the assumption A1)
implies that the unknown system has less inputs than outputs,
i.e., n < m, and there exists a left stable inverse of the
unknown system.
A2) The input sequence {s(t)} is a complex, zero-mean and
non-Gaussian random vector process with element processes
{si(t)}, i = 1, n being mutually independent. Each element
process {si(t)} is an i.i.d. process with a variance σ2

si
�= 0

and a nonzero fourth-order cumulant γi �= 0 defined as

γi = cum{si(t), si(t), s∗i (t), s
∗
i (t)} �= 0. (3)

A3) The deconvolver W (z) is an FIR channel of sufficient
length L so that the truncation effect can be ignored.
A4) The noise sequence {n(t)} is a zero-mean, Gaussian
vector stationary process whose component processes {nj(t)},
j = 1,m have nonzero variances σ2

nj
, j = 1,m.

A5) The two vector sequences {n(t)} and {s(t)} are mutually
statistically independent.

Under A3), the impulse response {G(k)} of the cascade
system is given by

G(k) :=
∑L2

τ=L1
W (τ)H(k−τ), k ∈ Z, (4)

where the length L := L2 −L1 + 1 is taken to be sufficiently
large. In a vector form, (4) can be written as

g̃i = H̃w̃i, i = 1, n, (5)
where g̃i is the column vector consisting of the ith output
impulse response of the cascade system defined by g̃i :=
[gT

i1, g
T
i2, · · · , gT

in]T ,
gij := [· · · , gij(−1), gij(0), gij(1), · · ·]T , j = 1, n (6)

where gij(k) is the (i, j)th element of matrix G(k), and w̃i

is the mL-column vector consisting of the tap coefficients
(corresponding to the ith output) of the deconvolver defined
by w̃i :=

[
wT

i1,w
T
i2, · · · ,wT

im

]T ∈ CmL,

wij := [wij(L1), wij(L1 + 1), · · · , wij(L2)]
T ∈ CL, (7)

j = 1,m, where wij(k) is the (i, j)th element of matrix W (k),
and H̃ is the n×m block matrix whose (i, j)th block element
Hij is the matrix (of L columns and possibly infinite number
of rows) with the (l, r)th element [Hij ]lr defined by [Hij ]lr
:= hji(l − r), l = 0,±1,±2, · · ·, r=L1, L2, where hij(k) is
the (i, j)th element of the matrix H(k).

In the multichannel blind deconvolution problem, we want
to adjust w̃i’s (i = 1, n) so that

[g̃1, · · · , g̃n] = H̃[w̃1, · · · , w̃n] = [δ̃1, · · · , δ̃n]P , (8)

where P is an n×n permutation matrix, and δ̃i is the n-block
column vector defined by

δ̃i := [δT
i1, δ

T
i2, . . . , δ

T
in]T , i = 1, n (9)

δij :=
{

δ̂i, if i = j,
(· · · , 0, 0, 0, · · ·)T , otherwise.

(10)

Here, δ̂i is the column vector (of infinite elements) whose rth
element δ̂i(r) is given by δ̂i(r) = diδ(r−ki), where δ(t) is the

Kronecker delta function, di is a complex number standing for
a scale change and a phase shift, and ki is an integer standing
for a time shift.

III. EIGENVECTOR ALGORITHMS (EVAS)

A. Analysis of eigenvector algorithms with reference signals
for MIMO-IIR channels

In order to solve the BD problem, the following cross-
cumulant between zi(t) and a reference signal x(t) (see Fig. 1)
is defined;

Dzx = cum{zi(t), z∗i (t), x(t), x∗(t)}, (11)

where zi(t) is the ith element of z(t) in (2) and the reference
signal x(t) is given by fT (z)y(t), using an appropriate
filter f(z). The filter f(z) is called a reference system. Let
a(z) := HT (z)f(z) = [a1(z),a2(z),· · ·,an(z)]T , then x(t) =
fT (z)H(z)s(t) = aT (z)s(t). The element ai(z) of the filter
a(z) is defined as ai(z) =

∑∞
k=−∞ ai(k)zk and the reference

system f(z) is an m-column vector whose elements are fj(z)
=

∑L2
k=L1

fj(k)zk, j = 1,m.
Jelonnek et al. [4] have shown in the single-input case that

by the Lagrangian method, the maximization of |Dzx| under
σ2

zi
= σ2

sρi
leads to a closed-form expressed as a generalized

eigenvector problem, where σ2
zi

and σ2
sρi

denote the variances
of the output zi(t) and a source signal sρi

(t), respectively,
and ρi is one of integers {1, 2, · · · , n} such that the set {ρ1,
ρ2,· · ·,ρn} is a permutation of the set {1, 2,· · ·,n}. In our case,
Dzx and σ2

zi
can be expressed in terms of the vector w̃i as,

respectively,

Dzx = w̃H
i B̃w̃i, σ2

zi
= w̃H

i R̃w̃i, (12)

where B̃ is the m × m block matrix whose (i, j)th block
element Bij is the matrix with the (l, r)th element [Bij]lr cal-
culated by cum{y∗

i (t−L1−l+1), yj(t−L1−r+1), x∗(t), x(t)}
(l, r = 1, L) and R̃ = E[ỹ∗(t)ỹT (t)] is the covariance matrix
of m-block column vector ỹ(t) defined by

ỹ(t) :=
[
yT

1 (t),yT
2 (t), · · · ,yT

m(t)
]T ∈ CmL, (13)

yj(t) := [yj(t-L1), yj(t-L1-1), · · · , yj(t-L2)]
T ∈ CL, (14)

j = 1,m. Therefore, by the similar way to as in [4], the
maximization of |Dzx| under σ2

zi
= σ2

sρi
leads to the following

generalized eigenvector problem;

B̃w̃i = λiR̃w̃i. (15)

Moreover, Jelonnek et al. have shown that the eigenvector
corresponding to the maximum magnitude eigenvalue of R̃†B̃
becomes the solution of the blind equalization problem in [4],
which is referred to as an eigenvector algorithm (EVA). Note
that since Jelonnek et al. have dealt with SISO-IIR channels
or SIMO-IIR channels, the constructions of B̃, w̃i, and R̃ in
(15) are different from those proposed in [4]. In this paper,
under the assumption that any reference system f(z) is used,
we want to show how the eigenvector algorithm (15) works
for the BD of the MIMO-IIR channel (1).

To this end, we use the following equalities;

R̃ = H̃
H
Σ̃H̃, B̃ = H̃

H
Λ̃H̃, (16)
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where Σ̃ is the block diagonal matrix defined by

Σ̃ := block-diag{Σ1,Σ2, · · · ,Σn}, (17)

Σi := diag{· · · , σ2
si

, σ2
si

, σ2
si

, · · ·}, i = 1, n, (18)

and Λ̃ is the block diagonal matrix defined by

Λ̃ := block-diag{Λ1,Λ2, · · · ,Λn}, (19)

Λi := diag{· · · , |ai(−1)|2γr, |ai(0)|2γi, |ai(1)|2γi, · · ·}, (20)

i = 1, n. Since both Σ̃ and Λ̃ become diagonal, (16)
shows that the two matrices R̃ and B̃ are simultaneously
diagonalizable in a wide sense.

Here, let the eigenvalues of the diagonal matrix Σ̃−1Λ̃ is
denoted by

λi(k) := |ai(k)|2γi/σ2
si

, i = 1, n, k ∈ Z. (21)

We put the following assumption on the eigenvalues λi(k)′s.
A6) All the eigenvalues λi(k)′s are distinct for i = 1, n and
k ∈ Z.

Theorem 1: Suppose the noise term n(t) is absent and the
length L of the deconvolver is infinite (that is, L1 = −∞ and
L2 = ∞). Then, under the assumptions A1) through A6), the
n eigenvector w̃i’s corresponding to the n nonzero eigenvalues
λi(k)′s of matrix R̃†B̃ for i = 1, n and an arbitrary k ∈ Z
become the vectors w̃i’s satisfying (8).
Outline of the proof: Based on (15), we consider the following
eigenvector problem;

R̃
†
B̃w̃i = λiw̃i. (22)

Then, from (16), (22) becomes

(H̃
H
Σ̃H̃)†H̃

H
Λ̃H̃w̃i = λiw̃i. (23)

Under L1 = −∞ and L2 = ∞, we have the following
equations;

(H̃
H
Σ̃H̃)† = H̃

†
Σ̃

†
H̃

H†
, H̃

H†
H̃

H
= I, (24)

which are shown in [7] along with their proofs. Then it follows
from (23) and (24);

H̃
†
Σ̃

−1
Λ̃H̃w̃i = λiw̃i. (25)

Multiplying (25) by H̃ from the left side and using (24),
(25) becomes

Σ̃
−1

Λ̃H̃w̃i = λiH̃w̃i. (26)

By (22), Σ̃−1Λ̃ is a diagonal matrix with diagonal elements
λi(k), i = 1, n and k ∈ Z, and thus (22) and (26) show that
its diagonal elements λi(k)′s are eigenvalues of matrix R̃†B̃.
Here we use the following fact;

lim
L→∞

(rank R̃)/L = n, (27)

which is shown in [6] and its proof is found in [2]. Using
this fact, the other remaining eigenvalues of R̃†B̃ are all
zero. From the assumption A6), the n nonzero eigenvalues
λi(k) �= 0, i = 1, n, obtained by (26), that is, the n
nonzero eigenvectors w̃i, i = 1, n, corresponding to n nonzero
eigenvalues λi(k) �= 0, i = 1, n, obtained by (22) become n
solutions of the vectors w̃i satisfying (8).

Remark 1: When the length L of the deconvolver is finite,
the size of the matrix R̃†B̃ is mL × mL, but its rank
is asymptotically equal to nL as L → ∞. Therefore, it
follows from the assumption A6) that there exist nL nonzero
eigenvalues of R̃†B̃ which are approximately equal to the n
nonzero eigenvalues λi(k), i = 1, n of the matrix Σ̃−1Λ̃ and
(m−n)L eigenvalues of R̃†B̃ which are approximately equal
to zero.
B. How to choose the eigenvectors

From Remark 1, we have a problem of how the eigenvectors
corresponding to w̃i, i = 1, n, satisfying (8) can be chosen
from all eigenvectors of R̃†B̃. In this subsection, a solution
of the problem will be shown. To this end, we consider the
following eigenvector problem;

B̃R̃
†
ŵi = λ̂iŵi, (28)

where the structure of ŵi is the same as the one of w̃i, but
the elements of ŵi are different from the ones of w̃i. The
eigenvalues λ̂i’s of B̃R̃† correspond to λi’s of R̃†B̃, because
the eigenvectors obtained from (28) are the left eigenvectors
of R̃†B̃, corresponding to λi’s. Moreover, the conjugately
transposed vectors of the eigenvectors obtained from (28)
correspond (or are equal) to the row vectors of H̃ in (5) up to
constants. The proof of the mentioned above is given below:
Substituting (16) into (28), we obtain

H̃
H
Λ̃H̃(H̃

H
Σ̃H̃)†ŵi = λ̂iŵi. (29)

By the similar way to (25), (29) becomes

H̃
H
Λ̃Σ̃

−1
H̃

H†
ŵi = λ̂iŵi, (30)

Multiplying (30) by H̃H† from the left side, (30) becomes

Λ̃Σ̃
−1

H̃
H†

ŵi = λ̂iH̃
H†

ŵi. (31)

Let ĝi := H̃H†ŵi, then (31) becomes Λ̃Σ̃−1ĝi = λ̂iĝi. This
means that since Λ̃Σ̃−1 is a diagonal matrix, the elements
of ĝi are zero except for one element. On the other hand,
multiplying ĝi = H̃H†ŵi by H̃H from the left side, we have

H̃
H

ĝi = H̃
H

H̃
H†

ŵi. (32)

We obtain from (29) that ŵi belongs to the range of H̃H .
This fact means that there exists a vector ξ̂ such that ŵi =
H̃H ξ̂i. Since H̃HH̃H†H̃H = H̃H , (32) gives

H̃
H

ĝi = H̃
H

H̃
H†

ŵi = H̃
H

H̃
H†

H̃
H

ξ̂i = H̃
H

ξ̂i = ŵi.
(33)

which implies ŵH
i = ĝH

i H̃ . This shows along with the fact
that all the elements of ĝi are zero except for one element
that the conjugately transposed vector of ŵi becomes a row
vector of H̃ up to a constant. This completes the proof.

It can be seen from the definition of the block element Hij

(see it stated below (7)) that Hij is a matrix (of L columns
and possibly infinite number of rows) having a special Toeplitz
(or constant-along-diagonals) structure. Therefore, the (cross)
correlation of a pair of rows of Hij (by shifting their elements
left or right appropriately) is the same for all pairs of rows
of Hij if L is infinite. In practice, however, the length L of
the equalizer and the length K of the channel are finite, and
so Hij is a matrix of L columns and L + K − 1 rows, that
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is, Hij ∈ C(L+K−1)×L. In this case, pairs of rows of Hij

have approximately the similar correlations for all pairs of
rows of Hij if L is sufficiently large. According to Remark 1
and the above discussion, we consider nL nonzero eigenvalues
and (m − n)L approximately-zero eigenvalues of the matrix
R̃†B̃, and we can classify approximately nL eigenvectors
w̃i in (22) corresponding to nL nonzero eigenvalues into
n sets of L eigenvectors whose pair have almost the same
correlations for all pair of eigenvectors of each set, and there
remain (m−n)L eigenvectors corresponding to the remaining
(m − n)L eigenvalues which are approximately zero. Thus
we propose a tentative procedure of finding n appropriate
eigenvectors satisfying (8) is as follows;
1) Set k = 1 (where k denotes the number of iterations from
the beginning less than n+1).
2) Select the eigenvector w̃ of R̃−1B̃ and the eigenvector ŵ of
B̃R̃−1 corresponding to the maximum magnitude eigenvalue
among |λ̂i|’s.
3) Calculate the magnitude of the correlations of all pairs of
ŵ and ŵi’s.
4) Separate L eigenvalues λ̂’s from the others such that their
magnitudes are larger than the remaining (n − k)L ones, and
save the (n− k)L remaining eigenvalues λ̂’s for finding other
eigenvectors.
5) Put k = k + 1 and stock the w̃ obtained in 2). If k = n +
1, stop the iterations, otherwise, go to 2).

Therefore, the n eigenvectors w̃’s stocked in step 5) are the
n solutions in (8)

IV. COMPUTER SIMULATIONS
To demonstrate the validity of the proposed method, many

computer simulations were conducted. Some results are shown
in this section. The unknown system H(z) was set to be an
FIR channel with two inputs and three outputs, and assumed
that the length of channel was three (K = 3), that is, H(k)’s
in (1) were set to be H(z) =

∑2
k=0H

(k)zk =
 1.00 − 0.35z + 0.10z2 0.65 + 0.25z − 0.15z2

0.50 − 0.30z + 0.20z2 1.00 + 0.25z + 0.10z2

0.60 + 0.10z + 0.40z2 0.10 + 0.20z + 0.10z2


 .

The Gaussian noises nj(t) with its variance σ2
nj

were included
in the output yj(t) at various SNR levels. The SNR was
considered at the output of the system H(z). The source
signals s1(t) and s2(t) were a sub-Gaussian signal and a super-
Gaussian signal, where the sub-Gaussian signal takes one of
two values, −1 and 1 with equal probability 1/2 and the super-
Gaussian signal takes −2, 2, and 0 with probabilities 1/8,
1/8, and 6/8, respectively. As a measure of performances, we
used the multichannel intersymbol interference (MISI)
[3]. The parameters L1 and L2 in W (z) were set to be 0 and
9, respectively. The first and the second components of the
reference system f(z) were, respectively, set to be z2 and 0.
that is, x(t) = y1(t − 2).

Fig. 2 shows the results of performances of the proposed
EVA when the SNR levels were respectively taken to be 5
through 40 dB for every 5 dB, where each MISI shown in
Fig. 2 was the average of the performances obtained by 30

EVA (5000 data samples)

SNR (dB)
5 10 15 20 25 30 35 40

-22

-17

-12

-7

-2

Fig. 2. The performances of the EVA with varying SNR levels, in the cases
of 5,000 data samples.

independent Monte Carlo runs. In each Monte Carlo run, the
final eigenvectors were obtained by ten iterative calculations,
where in each iteration, R̃ and B̃ were estimated by 5,000
data samples.

It can be seen from Fig. 2 that when the SNR level is more
than about 15 dB, the EVA provides good performances. How-
ever, as the SNR level decreases, the performances obtained
by the EVA become worse. The reason is that since the matrix
R̃ of R̃†B̃ is a covariance matrix of ỹ(t) in (13), that is, R̃
is formulated by second-order statistics, then the eigenvector
calculation is affected by the Gaussian noise.

V. CONCLUSIONS
We have proposed an EVA for solving the BD problem.

Differently from the methods which needs deflation methods,
e.g., super-exponential methods, the EVA can provide such
filters that source signals can be extracted simultaneously
from their convolutive mixtures. The simulation results have
demonstrated the effectiveness of the proposed EVA. However,
from the simulation results, one can see that the EVA has such
a drawback that it is sensitive to Gaussian noise. Therefore,
as a further work, we will propose an EVA having such a
property that the BD can be achieved as little insensitive to
Gaussian noise as possible.
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