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Abstract— The matrix inversion lemma gives an explicit formula of
the inverse of a positive-definite matrix � added to a block of dyads
(represented as ��� ) as follows:

��������� � ��� ������� ��������������� .
It is well-known in the literature that this formula is very useful to
develop a block-based recursive least-squares algorithm for the block-
based recursive identification of linear systems or the design of adaptive
filters.

We extend this result to the case when the matrix � is singular,
and present a matrix pseudo-inversion lemma. Based on this result, we
propose a block-based adaptive multicahnnel super-exponential algorithm
(BAMSEA). We present simulation results for the performance of the
block-based algorithm in order to show the usefulness of the matrix
pseudo-inversion lemma.

I. INTRODUCTION

The familiar matrix inversion lemma states that the inverse of
a positive-definite � � � matrix � added to a block of dyads
(represented as ���) can be represented as
��������� � �

������
������

�
��
����

�
�
�
��

� (1)
where� is an ��� matrix and the superscript � denotes the complex
conjugate transpose (or Hermitian) operation. It is well-known in
the literature that this formula is very useful to develop a block-
based recursive least-squares algorithm for the block-based recursive
identification [1], [2] or the design of adaptive filters [3].

In the late 1980s, Ogawa extended the matrix inversion lemma in
(1) to the case when � is positive semidefinite [4]. However, his
extension is valid under the condition that the range of � includes
the range of �, but this condition is not satisfied for adaptive signal
processing in non-stationary environments.

In the present paper, we extend the matrix inversion lemma in (1)
to the case when the matrix � is positive semidefinite without the
above condition for the ranges of the relevant matrices, and present
a matrix pseudo-inversion lemma. Such a singular case may occur
in a situation where a problem dealt with is overdetermined in the
sense that it has more equations than unknowns. In particular, we
encountered this singular situation when we developed a sample-
based adaptive version of the super-exponential method (SEM) for
the blind deconvolution of multi-input multi-output (MIMO) systems,
where the number of its outputs is greater than the number of its
inputs. It should be noted that our previous work on the matrix
pseudo-inversion lemma is restricted to the case when the added
matrix ��� is a single dyad (i.e., � is a column vector) [9], [10].

After the presentation of the matrix pseudo-inversion lemma, we
apply this lemma to block-based adaptive blind deconvolution of a
MIMO system and we propose a block-based adaptive version of the
multichannel super-exponential algorithm for the blind deconvolution.

We also include simulation results for the performance of the
proposed algorithm in order to show its effectiveness, where we
compare the performance of the proposed algorithm using the lemma

with that of the algorithm using the built-in function in MATLAB
version 7.1.0 for calculating pseudoinverses of the relevant matrices
instead of using the lemma.

The present paper uses the following notation: Let � denote the
set of all integers. Let � denote the set of all complex numbers.
Let ���� denote the set of all � � � matrices with complex
components. The superscripts � , � and � denote, respectively, the
transpose, the complex conjugate and the (Moore-Penrose) pseudoin-
verse operations of a matrix. The symbol � denotes the direct sum of
subspaces or the direct sum of matrices and the superscript � denotes
the orthogonal complement of a subspace [6]. A matrix � � ����

is called a �	
� (or �	
��� matrix) if � can be represented as
� � ��� with � � �� and � � ��. Thus a Hermitian dyadic matrix
� can be described as � � ��� . The range space of � � ����

is denoted by ��� [5]. Let � = �� � stand for � � �� �� � � � � �.

II. MATRIX PSEUDO-INVERSION LEMMA: A GENERAL CASE

WITH A BLOCK OF DYADS

The following proposition gives an explicit formula of the pseu-
doinverse of a positive semidefinite Hermitian matrix � added to a
block of Hermitian dyads (represented as ���).

Proposition 1: Let� ����� be a positive semidefinite Hermitian
matrix, and � � ���� be a matrix and decomposed uniquely as
� � ����� ���� ���� � ��� 
�� ���� � �����

(2)
Let � be defined as

� �� ����� � ����
� (3)

Then the pseudoinverse �� of the matrix � is explicitly expressed,
depending on the values of matrices �� and ��, as follows:
1) If �� = 0, then
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� �
�
��
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�
�
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�
� (4)

2) If �� 	� � and �� � �, then
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�
�
�
�
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3) If �� 	� � and �� 	� �, then
�
� � �

�
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�
�
�
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where ��� and ���
� are respectively defined by
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and
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34901-4244-0921-7/07 $25.00 © 2007 IEEE.



with

	 ��

�
� �

� �

�
� 


�����
� (9)

and
� �� � ���

� �
�
����

�
� �

�
���� (10)

Here 
����� denotes the set of all �� � �� matrices with real
components.

All the proofs of Proposition, Corollary and Theorem in this paper
are omitted for page limit. They will be appear in a forthcoming
paper.

Remark 1: A technical important fact in Proposition 1 is that there
exists really the inverse of the matrix �� defined as

�� �� 	 � ������	
�
�
�
� ������	 (11)

in (8) even if 	 is not positive definite. The proof of the existence
is not easy and requires a notion of orthogonal projectors along with
a geometric approach to linear transformations [5].

It can be seen that the first and the second expressions of the
pseudoinverse given in Proposition 1 can be included as special cases
in the third expression of the pseudoinverse given in (6). Namely, we
have the following corollary.

Corollary 1: Under the same conditions in Proposition 1, it follows
that

�
� � ��������

� �
�
� ���� ������	�

��
� ������	

�
�
�
� � (12)

where ��� and ���
� are defined by (7) and (8), respectively.

III. BLOCK-BASED ADAPTIVE MULTICHANNEL

SUPER-EXPONENTIAL ALGORITHM

Let us consider a MIMO system with � inputs and � outputs as
described by

���� �

��
����

�
���
��� ��� � � �� (13)

where ���� is an �-column vector of output signals, ��� is an �-
column vector of input (or source) signals, ���� is an ��� matrix
sequence called the impulse response. The transfer function of the
channel is defined by

���� �

��
����

�
���

�
��

� � � �� (14)

It is assumed for theoretical analysis that the noise is absent in (13).
To recover the source signals, we process the output signals by an

��� equalizer (or deconvolver) � ��� described by

���� �

��
����

�
���
���� ��� � � �� (15)

The objective of multichannel blind deconvolution is to construct
an equalizer that recovers the original source signals only from the
measurements of the corresponding outputs.

We put the following assumptions on the channel and the source
signals [8]:
A1) The transfer function ���� is stable and has full column rank
on the unit circle 
�
 = 1 [ this implies that the unknown system
has less inputs than outputs, i.e., ���, and there exists a left stable
inverse of the unknown system ].
A2) The input sequence ����� is a complex, zero-mean, non-
Gaussian random vector process with element processes �������, �
= �� � being mutually independent. Moreover, each element process
������� is an i.i.d. process with a variance ��

� 	� � and a fourth-order
cumulant �� 	� �. The variances ��

� ’s and the fourth-order cumulants
��’s are unknown.
A3) The equalizer � ��� is an FIR channel of sufficient length � so
that the truncation effect can be ignored.

Under A3, let us consider an FIR equalizer with the transfer
function � ��� given by

� ��� �

���
����

�
���

�
��

� (16)

where �� and �� are respectively the first and the last superscripted
numbers of the tap coefficients � ���’s of the equalizer � ���,
and the length �:=�� � �� � � is taken to be sufficiently large.
Let ��� be the ��-column vector consisting of the tap coefficients
(corresponding to the �th output) of the equalizer defined by
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�	 � ��
� (18)

where ��
�
��� is the (�� �)th element of matrix � ���.

Inouye and Tanebe [8] proposed the multichannel super-
exponential algorithm (MSEA) for finding the tap coefficient vectors
���’s of the equalizer � ���, of which each iteration consists of the
following two steps:

��
���
� � �


�
��� ��� � � �� �� (19)
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�

�
 ��
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�

��� � � �� �� (20)

where ������ and ������ stand respectively for the result of the first step
and the result of the second step. Let ����� be the ��-column vector
consisting of the � consecutive inputs of the equalizer defined by

����� ��
�
������

	
� ������

	
� � � � � ������	

�	 � ���
� (21)

������ �� �	���� ���� 	���� �� � ��� � � � � 	���� ���	
	 � ��

�
(22)

where 	���� is the �th element of the output vector ���� of the channel
in (13). Then the correlation matrix �
 is represented as

�
 � �
�
��
������	 ���

�
� �

�����
� (23)

and the fourth-order cumulant vector ��� is represented as
��� � cum������� ������ ��
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where � ��	 denotes the expectation of a random variable �. We note
that the last term can be ignored in case of �

�
�����

�
�

= 0, in which
case �

�
�����

�
�

= 0 for all � = �� �.

Besides, we obtain (from (32) and (39) in [8])
��� � Im �
 ��� � � �� �� (25)

We should note that the stationarity of the input process ����� (or
the assumption A2)) ensures the relation (25), and that the relation
(25) means that the vector ��

���
� obtained by (19) satisfies
�
 ��

���
� � ��� (26)

Consider the batch algorithm in (19) and (20). The equation (20)
constrains a weighted norm of vector ��� to equal one, and thus we
assume this constraint is always satisfied using a normalization or
an automatic gain control (AGC) of ��� at each discrete (or sample)
time �. To develop an adaptive version of (19), we must specify the
dependency of each time � and rewrite (19) as

������ � �

�
��� ������� � � �� �� (27)

On the other hand, a block-based adaptive algorithm for designing
adaptive filters is one of many efficient adaptive filtering algorithms
aimed at increasing convergence speed and reducing the computa-
tional complexity just as the block-based least-mean-square (BLMS)
algorithm shown in [3, p. 347]. The basic principle of the block-based
algorithm for designing an adaptive filter is that the filter coefficients
remain unchanged during the processing of each data block and are
updated only once per block [3]. Suppose � is the block length. Then
the original discrete (or sample) time � is related the �-th block of
data as

� � �� � �� � � �� � � �� � � �� (28)
The index � is referred to as the ����� ��� �. Following this principle
along with the notation (28), we develop a block-based adaptive
multichannel super-exponential algorithm for blind deconvolution of
the system (13).
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Let � denote the block index. We can rewrite (27) as

������ � �

�
��� ������� � � �� �� (29)

Then we should obtain recursion formulas for block-updating of
matrix �
���, vector ������ and pseudoinverse �


�
��� in (29), re-

spectively.
�
��� � ��� !�� �
�� � �� � !� ��

�
��� ��

	
���� (30)

������ � ���!�� ���������!�

����
���

��
�����������
�������������

(31)
where
����� � ������ � ����� ����� � ��� � ��� � � � �

����� � ��� � � � ��	 � �
����

� (32)


����� �� �
�����
��� � 
�����
� "������� � ��� ��� " �
�
� ���� (33)

Here � 
�����
� " and � ��� ��� " denote, respectively, the estimates
of �

�

�����
�

�
and �

�
�����

�
�

at time �, !� is a positive number
close to, but greater than zero, which accounts for some exponential
weighting factor or forgetting factor [3]. For example, we may take
!� � �

��
.

Because we consider the case when the number of input � is less
than the number of output �, i.e., � � �, the correlation matrix
�
��� is not of full rank and a singular matrix [9]. Therefore we may

apply the matrix pseudo-inversion lemma to the recursive equation
(30).

By applying Proposition 1 to (30) for obtaining a recursive formula
for block-updating of pseudoinverse 	 ��� � �


�
���, we have the

following lemma.

Lemma 1: Let �, ��, �, ��, �, �� and �� in Proposition 1
are respectively defined as

� � �
���� (34)

�
� � 	 ��� � �


�
���� (35)

� � ��� !�� �
�� � ��� (36)

�
� �

�

�� !�
�

�
�� � �� �

�

�� !�
	 �� � ��� (37)

� � ���� �

!� ��

�
���� (38)

�� � ����� � �
�� � ��	 �� � ������� (39)

�� � ����� �
�
� � �
�� � ��	 �� � ��

	
����� (40)

Then, substituting these definitions into Proposition 1, the recursion
for the pseudoinverse 	 ��� � �


�
��� of the correlation matrix �
���

from 	 �� � �� is explicitly expressed, depending on the values of
vectors ����� and �����, as follows:
1) If ����� = 0, then

� ��� �
�

�� ��
�� �� � ��� � �� � ��������

��
�

�����
� ���� �� � ����

(41)
where

���
�

��� � ��� � ���� ��
�
� ���� �� � ��������

��� (42)
2) If ����� �� 0 and ����� = 0, then

� ��� �
�

�� ��
� �� � �� �

�
��

� ���
��
�
�
����� (43)

3) If ����� �� � and ����� �� �, then

� ��� � �
�
�
����

�
�
�
��� ��������������

��
�

��� �������������
� �

�
�
����

(44)

where � �
�
��� and ���

�
��� are respectively defined by

�
�
�
��� ��

�

�� ��
�� �� � �� �� �� � ��������

��
�

���

��
� ���� �� � ��� �

�
��

� ���
��
�
�
����� (45)

and

���
�

��� ��



������������ �

�����
� �������

���������� �������
�����

�
(46)

with
���� �� � ������������ (47)

where
����� � ��

� ���� �
�
��������� (48)

����� � ��
� ���� �

�
��������� (49)

These equations are initialized by their values appropriately se-
lected or calculated by the batch algorithm in (19) and (20) at initial
block index �� and used for � � �� � �, �� � �, � � �.

The proof of Lemma 1 is easy and follows from Proposition 1
along with simple calculations.

Based on Lemma 1 along with from (29) through (33), we
have following theorem which gives a recursion formula for block-
updating of the tap vector ������ for � = �� �.

Theorem 1: The recursion for ������ is
������ � � ��� ����� ����� � �� � �����
����
���

������ � ��� � ��	����� � ��� � �� � ��
�
��� ��

	
��� ����� � ��


�

(50)

where
���� �� ��� ���� (51)

	����� �� ��������
� � 
 � �������

� �������� � ��
�
��� � ��� ���� (52)

� �������
� ��� ��� 	�� � ����� � ���� � �	��������

�� (53)

� ��� ��� ��� ��� 	�� � ��� �� � �� � �	��
�
� ���� (54)

Here #� is a positive constant greater than !�, and 	 ��� is calculated
from (41), (43) or (44) depending on the values of ����� and �����.

Remark 2: The recursive algorithm proposed by Shalvi and Wein-
stein [7] can be shown to correspond to the particular case of Theorem
1 where � � � � �, � � � and the correlation matrices �
���’s are
nonsingular.

IV. SIMULATION RESULTS

To demonstrate the usefulness of the matrix pseudo-inversion
lemma, some computer simulations for obtaining the pseudoinverse
	 ��� � �


�
��� of the correlation matrix �
��� in (30) by using

Lemma 1 were conducted. We note here that we do not use Theorem
1, because we are not interested in finding ������’s but interested in
calculating �


�
���. The results of calculating ������’s and recovering

original sources ���’s will be found in a forthcoming paper.
We considered a MIMO system ���� with two inputs (� � �)

and five outputs (� � �), and assumed that the system ���� is of
FIR and the length of channel is three, that is ����’s in (14) were
set to be

���� �

��
���

�
���

�
�� �

�
����

���� � ������� � ������� ���� � ������� � �������

����� ������� � ������� ���� � ������� � �������

���� � ������� � ������ ���� � ������� � �������

���� � ������� � ������� ���� � ������ � �������

���� � ������� � ������ ���� � ������� � �������

�
���� �(55)

Two source signals were 4-PSK and 8-PSK signals, respectively.
The length of the equalizer is seven (� � �). For obtaining the
pseudoinverse of the correlation matrix, the initial values of �
, ���
and 	 were estimated using 30 data samples. The value of !� was
chosen as ! �

�
��

for each �. As a measure of performance, we use
the following sum of the Euclidean or Frobenius norms of the four
error matrices for each �:

$ ��
� � ���� � � � � ���� � � � � 	��� � � � � 
��� �

� �
��� � � (56)

where � � ���� � denotes the Euclidean or Frobenius norm of matrix
� ����, and � ����, � ����, � 	��� and � 
��� are respectively error
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matrices defined by using Moore-Penrose conditions as follows [5].
� ���� � �
���	 ��� �
���� �
��� (57)

� ���� � 	 ��� �
���	 ���� 	 ��� (58)

� 	��� � � �
���	 ����� � �
���	 ��� (59)

� 
��� � �	 ��� �
����� � 	 ��� �
��� (60)
In this application, from A2), the input process ����� is stationary,
and this means that the random process �������� is also stationary.
Thus it follows from (23) that ������ belongs almost surely (a.s.) (or
with probability 1) to Im �
, that is,

��
���� � Im �
� 
��� (61)

This means from (32), (36) and (38) that
��� � (�)� (62)

Therefore we can assume in this application that the component
matrix �� = ����� always vanishes, that is, ����� = 0, and we
can use the recursion formula (41) for calculating the pseudoinverse
	 ��� � �


�
��� at each iteration (or block index) �. Some results for

the case in which the random process �������� is not stationary (the
time-variant channel), that is, ����� 	� �, will be presented in the
symposium and also found in a forthcoming paper.

We compared the performance of the proposed method (i.e., the
method using the matrix pseudo-inversion lemma) with the perfor-
mance of the method using the built-in function ”pinv” in MATLAB
Version 7.1.0 for calculating the pseudoinverse 	 ��� � �


�
��� of

correlation matrix �
���. The pseudoinverses are calculated iteratively
(or recursively) for each iteration (or recursion) number � for the two
methods.

Fig. 1 shows the performance results of the performance measure
$ for the proposed method with � � � ((a)) and � � � ((b)) and
for the latter method ((c)) by using 500 data samples with � � �.

We also compared performances of the two methods in computa-
tional complexity by using the built-in function ”flops” in MATLAB
Version 5.2 and in execution time by using a personal computer
(PC) with an 3.0 GHz processor and 1GB main memories used in
simulation experiments.

Table 1 shows the average of the numbers of floating point
operations (flops) and the average of the execution times over 10
independent Monte Carlo runs using 500 data samples of the outputs
for each Monte Carlo run for the proposed method (with � � � and
� � �) and the method using ”pinv” (with � � �).

It can be seen from Fig. 1 ((a) and (b)) and Table 1 that the
performance measure $ , the average of the numbers of floating point
operations and the average of the execution times of the proposed
method are better as the length of the block � increases.

In the meantime, it can be seen from Fig. 1 ((b) and (c)) that the
accuracy of the matrix pseudo-inversion lemma is almost equivalent
to the built-in function ”pinv”. However, it can be seen from Table 1
that the average of the numbers of floating point operations and the
average of the execution times for the proposed method are better
than those for the method using built-in function ”pinv” at about
34.2% and 39.1%, respectively.

We consider that one of reasons why the matrix pseudo-inversion
lemma is superior to the built-in function ”pinv” in the numbers of
floating point operations and the execution times is that it is not
necessary to calculate the pseudo-inverse �� of (4) in Proposition 1,
because the results of the previous iteration 	 �� � ��= �
��� � ��
can be used instead of �� in (41) of Lemma 1. Therefore, the matrix
pseudo-inversion lemma is useful to calculate the pseudoinverse of
the matrix for block-based adaptive algorithms of blind deconvolu-
tion.

Table 1. Comparison of the averages of the numbers of floating
point operations (flops) and the execution times.

The method flops times [sec]

The proposed method (� � �) 5.5946 � ��� 1.0322
The proposed method (� � �) 2.9405 � ��� 0.6171

The method using ”pinv” (� � �) 4.4664 � ��� 1.0135

V. CONCLUSION

We extended the matrix inversion lemma to the case when the
matrix � in ����� is singular, and presented an matrix pseudo-

Fig. 1. Performance measure of the � (a) the proposed method (� � �) (b)
the proposed method (� � 
) (c) the method using ”pinv” (� � 
).

inversion lemma. In order to show the usefulness of this lemma,
we applied it to develop an block-based adaptive super-exponential
algorithm for the blind deconvolution of a MIMO system. It has
been shown through computer simulations that the matrix pseudo-
inversion lemma is useful for block-based adaptive algorithms of
blind deconvolution.
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