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Abstract— This paper presents an eigenvector algorithm (EVA)
derived from a criterion using reference signals, in which the EVA
is applied to the blind source separation (BSS) of instantaneous
mixtures. The proposed EVA works such that source signals are
simultaneously separated from their mixtures. This is a new re-
sult, which has not been clarified by the conventional researches.
Moreover, by modifying the criterion, the corresponding EVA
which is robust to Gaussian noise is derived. Simulation results
show the validity of the proposed EVAs.

I. INTRODUCTION

This paper deals with the blind source separation (BSS)
problem for a multiple-input and multiple-output (MIMO)
static system driven by independent source signals. To solve
this problem, reference signals are used. Researches on the
BSS problem by using the idea of the reference signal, to our
best knowledge, have been made by Jelonnek et al. [4], [5] and
Adib et al. [2]. Jelonnek et al. have proposed an eigenvector
algorithm (EVA) derived from a criterion using reference
signals, in order to solve blind equalization of single-input
and single-output (SISO) systems. Adib et al. have proposed
contrast functions for solving the BSS problem, in which
reference signals are included into the contrast functions, but
they have not derived explicit algorithms for solving the BSS
problem from the contrast functions.

In this paper, the EVA derived from a criterion with refer-
ence signals is used for solving the BSS problem of MIMO
static systems, and then it will be shown that the EVA works
such that source signals are simultaneously separated from
their mixtures. Moreover, by modifying the criterion, it will
be shown that the EVA derived from the modified criterion
consists of only higher-order cumulants and is able to work
such that even if Gaussian noises are added to the outputs of
the system, it can be used to achieve the BSS with as little
the influence of Gaussian noise as possible. Simulation results
show that the proposed EVAs can successfully solve the BSS
problem.

II. PROBLEM FORMULATION

Throughout this paper, let us consider the following MIMO
static system with n inputs and m outputs:

y(t) = Hs(t) + n(t), (1)

y(t)s(t) z(t)

n(t)
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Fig. 1. The composite system of an unknown system and a filter, and
reference system.

where y(t) represents an m-column output vector called the
observed signal, s(t) represents an n-column input vector
called the source signal, H is an m×n matrix, n(t) represents
an m-column noise vector. It can be regarded as a linear
mixture model with additive noise.

To achieve the blind source separation (BSS) for the system
(1), the following n filters, which are m-input single-output
(MISO) static systems driven by the observed signals, are
used:

zl(t) = wT
l y(t), l = 1, 2, · · · , n, (2)

where zl(t) is the lth output of the filter, wl =
[wl1,wl2,· · ·,wlm]T is an m-column vector representing the
m coefficients of the filter. Substituting (1) into (2), we obtain

zl(t) = wT
l Hs(t) + wT

l n(t)

= gT
l s(t) + wT

l n(t), l = 1, 2, · · · , n, (3)

where gl = [gl1,gl2,· · ·,gln]T := HT wl is an n-column vector.
The BSS problem considered in this paper can be formulated
as follows: Find n filters wl’s denoted by w̃l’s satisfying the
following condition, without the knowledge of H .

g̃l = HT w̃l = δ̃l, l = 1, 2, · · · , n, (4)

where δ̃l is an n-column vector whose elements δ̃lr (r =
1, 2, · · · , n) are equal to zero expect for ρlth element, that
is, δ̃lr = clδ(r−ρl), r = 1,2,· · ·,n. Here, δ(t) is the Kronecker
delta function, cl is a number standing for a scale change,
and ρl is one of integers {1, 2, · · · , n} such that the set
{ρ1,ρ2,· · ·,ρn} is a permutation of the set {1,2,· · ·,n}.

To solve the BSS problem, we put the following assump-
tions on the system and the source signals.

A1) The matrix H in (1) is an m×n (m ≥ n) matrix and
has full column rank.
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A2) The input sequence {s(t)} is a zero-mean, non-
Gaussian vector stationary process whose element processes
{si(t)}, i = 1, 2, · · · , n, are mutually statistically independent
and have nonzero variance, σ2

si
= E[s2

i (t)] 6= 0 and nonzero
fourth-order cumulants, γi defined as

γi = cum{si(t), si(t), si(t), si(t)} 6= 0 for i = 1, 2, · · · , n, (5)

A3) The noise signal sequence {n(t)} is a zero-mean,
Gaussian vector stationary process whose element processes
{ni(t)}, i = 1,2,· · ·,m, are mutually statistically independent.

A4) The two vector sequences {n(t)} and {s(t)} are
mutually statistically independent.

It is assumed for the sake of simplicity in this paper that
all the signals and all the systems are real-valued.

III. EIGENVECTOR ALGORITHMS (EVAS)

A. Analysis of eigenvector algorithms with reference signals
for MIMO static systems

In this subsection, we assume that there is no noise n(t)
in the output y(t), and then analyze eigenvector algorithms
for MIMO static systems. Under this assumption, to solve the
BSS problem, the following cross-cumulant between zl(t) and
a reference signal x(t) (see Fig. 1) is defined:

Czx = cum{zl(t), zl(t), x(t), x(t)} (6)

where the reference signal x(t) is given by fT y(t) =
fT Hs(t) = aT s(t) (aT := fT H is a vector whose elements
are a1,a2,· · ·,an), using an appropriate filter f . The filter f is
called a reference system. Moreover we define the constraint
σ2

zl
= σ2

sρl
, where σ2

zl
and σ2

sρl
denote the variances of the

output zl(t) and a source signal sρl
(t), respectively. Adib,

et al. [2] have shown that the BSS can be achieved by
maximizing |Czx| in (6) under the constraint, but they have
not proposed any algorithm for achieving this idea. In the
single-input case, Jelonnek et al. [4], [5] have shown that
by the Lagrangian method, the maximization of |Czx| under
σ2

zl
= σ2

sρl
leads to a closed-form expression as the following

generalized eigenvector problem:

Cyxwl = λRwl (7)

Then they utilize the facts that Czx and σ2
zl

can be expressed
in terms of the vector wl as, respectively,

Czx = wT
l Cyxwl, (8)

σ2
zl

= wT
l Rwl, (9)

where Cyx is a matrix whose (i,j) element is calculated
by cum{yi(t), yj(t), x(t), x(t)} and R = E[y(t)yT (t)] is
the covariance matrix of m-column vector y(t). Moreover,
they have shown that the eigenvector corresponding to the
maximum eigenvalue of R†Cyx becomes the solution of the
blind equalization problem in [4], [5], which is referred to
as an eigenvector algorithm (EVA). However, the algorithm
proposed by Jelonnek et al. is for SISO or SIMO infinite
impulse response channel. Therefore, we want to show how
the eigenvector algorithm (7) works for the BSS in the case

of the MIMO static system. To this end, we use the following
equalities:

R = HΣHT , (10)
Cyx = HΛHT , (11)

where Σ is a diagonal matrix whose elements are σ2
si

, i =
1,2,· · ·,n and Λ is a diagonal matrix whose elements are a2

i γi

(i = 1,2,· · ·,n). Then we obtain the following theorem.
Theorem 1: Suppose the values a2

i γi/σ
2
si

, i = 1,2,· · ·,n are
all nonzero and distinct. If the noise n(t) is absent in (1), then
the n eigenvectors corresponding to n nonzero eigenvalues
of R†Cyx become the vectors w̃l

′s satisfying (4), where the
symbol † denotes the pseudo-inverse operation of a matrix.

Proof: Based on (7), we consider the following eigen-
vector problem:

R†Cyxwl = λwl. (12)

Then, from (10) and (11), (12) becomes

HT†
Σ

−1H†HΛHT wl = λwl. (13)

Since H has full column rank, using a property of the pseudo-
inverse operation ([7], p. 433), we obtain

HT†
Σ

−1
ΛHT wl = λwl. (14)

Multiplying (14) by HT from left side and using a property
of the pseudo-inverse operation again, (14) becomes

Σ
−1

ΛHT wl = λHT wl. (15)

By noting that Σ
−1

Λ is a diagonal matrix whose elements,
a2

i γi/σ
2
si

, i = 1,2,· · ·,n, are all nonzero and distinct, if gl

:= HT wl 6= 0, then the eigenvectors gl obtained from (15)
become the vectors g̃l satisfying (4). Namely, the n eigenvec-
tors wl corresponding to n nonzero eigenvalues of R†Cyx

obtained from (12) become the vectors w̃l satisfying (4).
Remark 1: In order to use Theorem 1, the reference sig-

nal x(t) contains nonzero contributions ai
′s from all source

signals si(t)
′s. This is the case except for pathological cases.

From Theorem 1, it can be seen that by all the n eigenvectors
corresponding to n nonzero eigenvalues of R†Cyx, all source
signals can be separated from the output y(t). This is a
novel result which has not been shown in the conventional
researches. Moreover, it can be seen from (15) that even if
the fourth-order cumulants γi have different signs from each
other, the vector w̃l satisfying (4) can be obtained. This fact
will be confirmed by computer simulations in Section V.

B. Robust Eigenvector algorithm

In the previous subsection, we assume that there are no
noises in the output signals. In this subsection, we shall show
such an eigenvector algorithm that the solutions (4) can be
obtained, even if the noise n(t) is presented in the output y(t).
To this end, we introduce fourth-order cumulants matrices of
m-vector random process {y(t)} [9], which constitute a set of
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m × m matrices C
(4)
y,i (i = 1, 2, · · · ,m). The (q,r)th element

of the matrix C
(4)
y,i is defined by

[C
(4)
y,i]q,r = cum{yq(t), yr(t), yi(t), yi(t)}, (16)

where [·]q,r denotes the (q, r)th element of the matrix C
(4)
y,i.

Then we consider an m × m matrix Q expressed by

Q =
∑m

i=1C
(4)
y,i, (17)

It is shown by a simple calculation (see [6]) that (17) becomes

Q = HΛ̃HT , (18)

where Λ̃ is a diagonal matrix defined by

Λ̃ := diag{γ1ã1, γ2ã2, · · · , γnãn} (19)
ãr :=

∑m

i=1h
2
ir, r = 1, 2, · · · , n, (20)

and diag{· · ·} denotes a diagonal matrix with the diagonal
elements built from its arguments.

Here, as a constraint, we take the following value:

|Czy| = |
∑m

i=1cum{zl(t), zl(t), yi(t), yi(t)}| = |wT
l Qwl|

= |
∑n

i=1ãiγig
2
li| (21)

Then, we consider of solving the problem that the fourth-order
cumulant |Czx| is maximized under the condition that |Czy| =
|ãρl

γρl
|. By the Lagrangian method, the following generalized

eigenvector problem is derived from the problem:

Cyxwl = λ̃Qwl (22)

From the following theorem, one can see that by solving
the eigenvector problem of the matrix Q†Cyx, its solutions,
that is, the n eigenvectors wl (l = 1,2,· · ·,n) correspond to the
vectors w̃l (l = 1,2, · · ·, n) in (4).

Theorem 2: Suppose the values a2
i /ãi, i = 1,2,· · ·,n are all

nonzero and distinct. Then the n eigenvectors corresponding
to n nonzero eigenvalues of Q†Cyx become the vectors w̃l,
l = 1,2,· · ·,n, satisfying (4).

Proof: Based on (22), we consider the following eigen-
vector problem:

Q†Cyxwl = λwl. (23)

Then, from (11), (18), and the property of the pseudo-inverse
operation, (23) becomes

HT†
Λ̃

−1
ΛHT wl = λwl. (24)

Multiplying (24) by HT from left side and using a property
of the pseudo-inverse operation again, (24) becomes

Λ̃
−1

ΛHT wl = λHT wl. (25)

By noting that Λ̃
−1

Λ is a diagonal matrix whose elements,
a2

i /ãi, i = 1,2,· · ·,n, are all nonzero and distinct, if gl :=
HT wl 6= 0, then the eigenvectors gl obtained from (25)
become the vectors g̃l satisfying (4). Namely, the n eigenvec-
tors wl corresponding to n nonzero eigenvalues of Q†Cyx

obtained from (23) become the vectors w̃l, l = 1,2,· · ·, n,
satisfying (4).

Remark 2: Since the matrix Q†Cyx consists of only fourth-
order cumulants, the eigenvectors derived from the matrix
can be obtained with as little influence of Gaussian noise as
possible, which is referred as a robust eigenvector algorithm
(REVA). From the matrix Λ̃

−1
Λ in (25), it can be seen that the

fourth-order cumulants γi are canceled each other. Therefore,
the eigenvector algorithms (22) can be applied to the case that
the signs of the fourth-order cumulants γi (i = 1,2,· · ·,n) are
different, that is, sub-Gaussian and super-Gaussian signals are
treated as source signals.

Remark 3: The proposed EVAs in (7) and (22), both are
closely related to the joint diagonalization (e.g., [1], [3]).

IV. DISCUSSION

In this section, let us consider the case that as a reference
signal,

x(t) = wT
l (t − 1)y(t) := gT

l (t − 1)s(t) (26)

is used, where wT
l (t − 1) denotes the vector obtained by the

proposed EVAs at time t−1 and gT
l (t−1) = [gl1(t−1),gl2(t−

1),· · ·,gln(t − 1)] := wT
l (t − 1)H . Then, the vector wl(t)

obtained by the proposed EVAs is calculated by using the
previous eigenvector wl(t− 1). This means that the proposed
EVAs are iteratively carried out. Under the reference signal
x(t) in (26), the matrix Cyx can be expressed as

Cyx = HΛ̇HT , (27)

where Λ̇ is a diagonal matrix with the diagonal elements
g2

li(t − 1)γi, i = 1,2,· · ·,n.
Since the diagonal elements of Λ̇ include gli, i = 1,2,· · ·,n,

which are the elements of the vector gl, if the vector w̃l

satisfying (4) is obtained by the proposed EVAs with (26),
the diagonal elements of Λ̇ become zero except for ρlth
diagonal element, that is, Λ̇ = diag{0, · · · , 0, g2

lρl
(t − 1)γρl

(ρlth element),0,· · ·,0}. This means that if the proposed EVAs
with the reference signal (26) are iteratively used to estimate
the vector w̃l in (4), only one source signal can be separated
from y(t). This ability is the same as the well-known method
obtained by the constrained maximization problem [8]. In
order to show different abilities from the conventional methods
which have such an ability, therefore, at least, one needs to
choose reference signals such that the diagonal elements of Λ

in (11) are of fixed values.

V. COMPUTER SIMULATIONS

To demonstrate the validity of the proposed methods, many
computer simulations were conducted. Some results are shown
in this section. The unknown system H was set to be a 4 ×
3 matrix, that is, a three-input four-output system:

H =









1.0 0.4 0.6
0.7 1.0 −0.3
0.2 −0.5 1.0

−0.45 0.25 0.7









. (28)

The three inputs si(t) (i = 1,2,3) of the system H were
two sub-Gaussian signals and one super-Gaussian signal, in
which each sub-Gaussian signal takes one of two values,
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Fig. 2. The average performances of the REVA and the EVA with varying
the SNR level, in the three cases of (i) 5000 samples, (ii) 10000 samples, (iii)
30000 samples.

−1 and 1 with equal probability 1/2 and the super-Gaussian
signal takes −2, 2, and 0 with probabilities 1/8, 1/8, and 6/8,
respectively . The filter f making a reference signal was set
to be f = [0,1,0,0]T . The Gaussian noises ni(t) (i = 1,2,3,4)
with their variances σ2

ni
were included in the outputs yi(t) at

various SNR levels. The SNR was considered at the output
of the system H . As a measure of performance, we used the
multichannel intersymbol interference (MISI) defined in [6].

Fig. 2 shows the performances of the proposed EVA and
REVA in the cases where the SNR levels were taken from
5 dB to 40 dB, in which each MISI shown in Fig. 2 was the
average of the performance results obtained by 50 independent
Monte Carlo runs. In each Monte Carlo run, the matrices R,
Q, and Cyx were estimated by data samples in the following
three cases: (Case 1) 2,500 data, (Case 2) 5,000 data, and (Case
3) 10,000 data. Note that the matrices R, Q, and Cyx were
estimated by using the following on-line methods, in which
the matrix R was estimated by Ṽ 1(t) in (30).

Q(t) := β1Q(t − 1) + (1 − β1){V 1(t)V
T
1 (t)

− 2V 1(t)Ṽ
T

1 (t) − tr{Ṽ 1(t)}V 1(t)}, (29)

where V 1(t) := y(t)yT (t), tr{X} denotes the trace of the
matrix X , and Ṽ 1(t) is a moving average of V 1(t) calculated
by

Ṽ 1(t) = β2Ṽ 1(t − 1) + (1 − β2)V 1(t), . (30)

The vector Cyx in (22) was calculated using a moving average
defined by

Cyx(t) := β1Cyx(t − 1) + (1 − β1){x
2(t)y(t)yT (t)

− 2ṽx1(t)x(t)yT (t) − ṽx2(t)y(t)yT (t)}, (31)

REVA (Case 1, one itaration)

REVA (Case 1, two iterations)

REVA (Case 2, one iteration)

REVA (Case 2, two iterations)
REVA (Case 3, one iteration)

REVA (Case 3, two iterations)

5 10 15 20 25 30 35 40

SNR   (dB)

5

0

-5

-10

-15

-20

-25

Fig. 3. The comparison results of the performances of the RSEM and the
SEM, obtained by varying the SNR level and different iterations.

where ṽxi(t) is a moving average defined by

ṽxi(t) = β2ṽxi(t − 1) + (1 − β2)vxi(t), i = 1, 2, (32)

where vx1(t) = x(t)y(t) and vx2(t) = x2(t). The parameters
β1 and β2 were set to be 0.99999 and 0.995, respectively.

It can be seen from Fig. 2 that for the case that the SNR level
is more than 25 dB, the EVA is more useful than the REVA,
because the EVA can provide better performances than the
REVA using a few data samples. On the other hand, the REVA
is effective for the case that the SNR level is less than 25 dB,
but the performance of the REVA depends on the accuracy of
the estimate of the matrix Q. Indeed, the results (solid lines
shown in Fig. 3) obtained by two iterations using the above
on-line estimation methods of Q and Cyx were better than
those shown in Fig. 2 (see doted lines shown in Fig. 3), in
which for each iteration, to implement (29) and (32), the data
samples in the above three cases were used. Here, the first
iteration started with appropriate initial values, and the second
iteration started with the initial values obtained from the first
iteration.

From all the results, we conclude that the EVA is effective
for the case of a little influence of Gaussian noise and the
REVA is useful for the case that Gaussian noise level is high,
but it depends on the accuracy of the estimate of the fourth-
order cumulant matrix Q.

VI. CONCLUSIONS

We have proposed two kinds of EVAs for solving the BSS
problem. By using reference signals, these are capable for
separating source signals simultaneously from their mixtures.
One of the EVAs is robust against Gaussian noise, which
means that the EVA can be used to estimate the (pseudo-)
inverse of H with as little influence of Gaussian noise as
possible. Computer simulations have demonstrated the validity
of the proposed EVAs.
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