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Abstract— The so called ”super-exponential” methods (SEMs) are
attractive methods for solving multichannel blind deconvolution problem.
The conventional SEMs, however, have such a drawback that they are
very sensitive to Gaussian noise. To overcome this drawback, the robust
super-exponential method (RSEM) were proposed for single-input single-
output infinite impulse response (SISO-IIR) channels and for multi-input
multi-output (MIMO) static channels (instantaneous mixtures). While
the conventional SEMs use the second- and higher-order cumulants
of observations, the RSEM uses only the higher-order cumulants of
observations. Since higher-order cumulants are insensitive to Gaussian
noise, the RSEM is robust to Gaussian noise. We proposed an RSEM
extended to the case of MIMO-IIR channels (convolutive mixtures). To
show the validity of the proposed RSEM, some simulation results are
presented.

I. INTRODUCTION

The present paper deals with the multichannel blind deconvolution
problem of infinite-impulse response (IIR) channels. To solve this
problem, the ideas of the super-exponential methods (SEMs) in [1]-
[3] are used. Several researchers (e.g., [1]-[3]) have so far proposed
some SEMs for solving independent component analysis (ICA),
blind source separation (BSS) and blind channel equalization (BCE).
One of the attractive properties of the SEMs is that the SEMs are
computationally efficient and converge to a desired solution at a
super-exponential rate. However, almost all the conventional SEMs
have such a drawback that they are very sensitive to Gaussian noise,
because the conventional SEMs utilize the second-order and the
higher-order cumulants of observations.

To overcomes the drawback, Kawamoto et al. proposed new
SEMs for SISO-IIR channels [7] and for MIMO static channels
(instantaneous mixtures) [6]. The proposed SEMs utilize only the
higher-order cumulants of observations, and hence the proposed
SEMs become robust to Gaussian noise, so that the proposed SEMs
are referred to as robust super-exponential methods (RSEMs).

The purpose of the present paper is to extend the previous idea of
RSEMs to the case of MIMO-IIR channels (convolutive mixtures)
in the presence of Gaussian noise and to propose an RSEM to
this case. One may extend directly the idea to the case of MIMO-
IIR channels when all the source signals are sub-gaussian or super-
gaussian. However, this is not the case in general. The extension of
the idea is not straightforward in the case when the source signals are
of different types, i.e., the sub-gaussian type and the super-gaussian
type. It is in need of an assumption on the deconvolvers, which is
specified later in this paper. Simulation results are presented to show
the effectiveness of the proposed RSEM.

The present paper uses the following notation: Let Z denote
the set of all integers. Let Cm�n denote the set of all m � n
matrices with complex components. The superscripts T , �, H and
y denote, respectively, the transpose, the complex conjugate, the
complex conjugate transpose (Hermitian) and the (Moore-Penrose)
pseudoinverse operations of a matrix or a linear operator. The symbols
Ker A and Im A denote the kernel and the image of matrix A,
respectively. The superscript � denotes the orthogonal complement
of a subspace. Let i = �� n stands for i � �� �� � � � � n.

Fig. 1. The composite system of an unknown system and a deconvolver.

II. PROBLEM FORMULATION

We consider an MIMO channel with n inputs and m outputs as
described by

y�t� �

�X
k���

H
�k�
s�t� k� � n�t�� t � Z� (1)

where s�t� is an n-column vector of input (or source) signals, y�t� is
an m-column vector of channel outputs, n�t� is an m-column vector
of Gaussian noises, and fH�k�g is an m�n impulse response matrix
sequence.
The transfer function of the channel is defined by

H�z� �

�X
k���

H
�k�zk� z � C� (2)

To recover the source signals, we process the output signals by an
n�m deconvolver (or equalizer) W �z� described by

z�t� �

�X
k���

W
�k�
y�t� k�

�

�X
k���

G�k�s�t� k� �

�X
k���

W �k�n�t� k�� (3)

where fG�k�g is the impulse response of the cascade system of the
unknown system H�z� and the deconvolver W �z� defined by

G�k� ��

�X
����

W ���H�k���� k � Z� (4)

The objective of multichannel blind deconvolution is to construct
a deconvolver that recovers the original source signals only from the
measurements of the corresponding outputs.

We put the following assumptions on the channel and the source
signals.
A1) The transfer function H�z� is stable and has full column rank
on the unit circle jzj = 1 [ this implies that the unknown system
has less inputs than outputs, i.e., n�m, and there exists a left stable
inverse of the unknown system ].
A2) The input sequence fs�t�g is a complex, zero-mean and non-
gaussian random vector process with element processes fsi�t�g, i =
�� n being mutually independent. Each element process fsi�t�g is an
i.i.d. process with a variance ��i �� � and a fourth-order cumulant

3598 ISCAS 20060-7803-9390-2/06/$20.00 ©2006 IEEE



�i �� �. Moreover, each element process fsi�t�g has nonzero �p �
q � �� st-order cumlants �i defined as

�i � cumfsi�t�� � � � � si�t�� �z �
p

� s�i �t�� � � � � s
�
i �t�� �z �

q��

g �� �� (5)

where p and q are nonnegative integers such that (p+q)�2.
A3) The deconvolver W �z� is an FIR channel of sufficient length L
so that the truncation effect can be ignored.
A4) The noise sequence fn�t�g is a zero-mean, gaussian vector
stationary process.
A5) The two vector sequences fn�t�g and fs�t�g are mutually
statistically independent.

Under A3, the impulse response fG�k�g of the cascade system
given by

G
�k� ��

L�X
��L�

W
���
H

�k���� k � Z� (6)

where the length L:=L��L��� is taken to be sufficiently large. In
a vector form, (6) can be written as

�gi � �H �wi� i � �� n� (7)
where �gi is the column vector consisting of the ith output impulse
response of the cascade system defined by

�gi ��
�
g
T
i�� g

T
i�� � � � � g

T
in

�T
� (8)

gij �� �� � � � gij����� gij���� gij���� � � �	
T � (9)

where gij�k� is the (i� j)th element of matrix G�k�, and �wi is the
mL-column vector consisting of the tap coefficients (corresponding
to the ith output) of the deconvolver defined by

�wi ��
�
w

T
i��w

T
i�� � � � �w

T
im

�T
� CmL� (10)

wij ��
�
wij

�L��� wij
�L����� � � � � wij

�L��
�T

� CL� (11)

where wij
�k� is the (i� j)th element of matrix W �k�, and �H is the

n�m block matrix defined by

�H ��

�
���
H�� H�� � � � H�m

H�� H�� � � � H�m

...
...

...
...

Hn� Hn� � � � Hnm

�
		
 � (12)

whose �i� j�th block element Hij is the matrix (of L columns and
possibly infinite number of rows) with the �l� r�th element �Hij 	lr
defined by

�Hij 	lr �� hji�l � r��
l � �������� � � � � r � L�� L� � �� � � � � L�� (13)

In the multichannel blind deconvolution problem, we want to adjust
�wi’s (i = �� n) so that

��g�� � � � � �gn	 � �H � �w�� � � � � �wn	 � ����� � � � � ��n	P � (14)
where P is an n � m permutation matrix, and ��i is the n-block
column vector defined by

��i �� ��Ti�� �
T
i�� � � � � �

T
in	

T � (15)

�ij ��

�
��i� if i � j�

�� � � � �� �� �� � � ��T � otherwise�
(16)

Here, ��i is the column vector (of infinite elements) whose rth element

�i�r� given by


�i�r� � di��r � ki�� (17)
where ��t� is the Kronecker delta function, di is a complex number
standing for a scale change and a phase shift, and ki is a integer
standing for a time shift.

III. ROBUST SUPER-EXPONENTIAL METHODS

A. Two-step iterative procedure for vector �gi

To find solutions in (14), the following two-step iterative procedure
with respect to the elements gij , j � �� n of the vector �gi is used:

g
���
ij �k� �

�j
aj�k��j

�gij�k��
p�g�ij�k��

q� j � �� n� (18)

g
���
ij �k� �

g
���
ij �k�p
��zi

� j � �� n� (19)

where gij�k� in the right-hand side of (18) is an element of �gi before
the iteration, ������ and ������ stand for the results of the first step and
the second step per iteration, p and q are nonnegative integers such
that (p+q)�2, aj�k� denotes a positive number (in subsection III.B,
it will be shown how we choose the values of aj�k�’s), �j denotes
the fourth-order cumulant of sj�t�, that is, �j is equal to �j in case
of p = 2 and q = 1, and ��zi denotes the variance of the output signal
zi�t�. Equation (18) is derived by replacing ��j of (26) in [2] with
aj�k��j , where ��j denotes the second-order cumulant of sj�t�, and
(19) is used to normalize g

���
ij obtained by (18).

Here it should be noted that in the conventional two-step proce-
dures (e.g., [1]-[3]), the denominator of the right-hand side of (18)
was set to 1 or the variance of sj�t�, whereas we consider the fourth-
order cumulant of sj�t�, i.e., �j .

Let g
�l�
ij �k� denote the value obtained in the lth cycle of the

iterations of two steps (18) and (19). The important fact of the two-
step procedure is that the n values g

�l�
ij �k� (j � �� n) converge to

zero except for only one of the values as the iteration number l
approaches infinity, that is, l	
. The magnitude of the remaining
one converges to a positive constant. This will be shown in the
following theorem.

Theorem 1: Let g���ij �k� be an initial value for iterations of two
steps (18) and (19) for each j � �� n and k � Z. Let �j�k� be
non-negative scalar defined as

�j�k� �

���� �j
aj�k��j

����
�

p�q��

� (20)

Let ji and ki be �ji� ki� � argmax�j�k� �j�k�jg
���
ij �k�j. Sup-

pose the index ji and ki are unique, that is, �ji�ki�jg
���
iji

�ki�j �

�j�k�jg
���
ij �k�j for any other j and k. Then as l	
, it follows

lim
l��

jg
�l�
ij �k�j �

�
�� for j �� ji� k �� ki�
�cj�k� �� �� for j � ji� k � ki�

(21)

where �cj�k� is a scalar positive constant.
Since theorem 1 is proven by using the similar way as in [6], the

proof of theorem 1 is omitted for page limit.
For notational simplicity, we confine ourselves to the case p �

� and q � � (which gives a solution in terms of fourth-order
cumulants), although our results are expandable to a general �p� q�
case (higher order cumulant case).

We turn to the two-step procedure (18) and (19) with p � �, q � �
and �j � �j (j � �� n). It becomes

g
���
ij �k� �

�

aj�k�
�gij�k��

��g�ij�k��� j � �� n� (22)

g
���
ij �k� �

g
���
ij �k�p
��zi

� j � �� n� (23)

B. Two-step iterative procedure for equalizer vector �wi

Since the parameters gij�k�’s involve implicitly the unknown pa-
rameters hij�k�’s, the two-step procedure cannot be handled directly.
Therefore, by solving the following weighted least squares problem,
we derive an algorithm with respect to wij’s so that the two steps
(22) and (23) can be handled directly.

min
�wi

� �H �wi � �gi�
H ��� �H �wi � �gi�� i � �� n� (24)

Here, �� is a diagonal matrix with positive diagonal elements. The
solutions are known to be given by

�wi � � �H
H
�� �H�y �H

H
���gi� i � �� n� (25)

In the conventional methods [1]-[3], the positive diagonal elements
of �� are set to 1 or the variances of the source signals. This means
that �HH �� �H is calculated by the second-order statistics of the
observed signal y�t�. We are convinced that this is the reason why
the conventional methods are sensitive to Gaussian noise.

In what follows, we shall show that the weighted least squares
approach in (24) can be applied to a set of fourth-order cumulants of
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the observed signals yi�t� (i � �� m), if we choose appropriately
a diagonal matrix �� in (24). To this end, we introduce fourth-
order cumulants matrices of m-vector random process fy�t�g, which

constitute a set of m �m block matrices �C
�	�

yi�j�l
, whose elements

are defined byh
�C
�	�

y
i�j�l

i
�p�q�l�l�

� cumfyq�t� l��� y
�
p�t� l��� yj�t� l�� y�i �t� l�g�

p� q� i� j � �� m� l�� l�� l � L�� L� � �� � � � � L�� (26)
where ��	�p�q�l�l� denotes the (l�� l�)th element of the (p� q)th block

matrix of the matrix �C
�	�

y
i�j�l

. Then, we consider an m � m block

matrix �C expressed by

�C �

mX
i�j��

L�X
l�L�

	ij �C
�	�

y
i�j�l

� (27)

where 	ij ’s are either 1 or 0, which represent design parameters. It
is shown by a simple calculation that (27) becomes

�C � �H
H
�� �H� (28)

where �� is a diagonal matrix defined by
�� �� diagf������ � � � ��ng� (29)
�r �� diagf� � � � �r�ar����� �r�ar���� �r�ar���� � � �g� r � �� n� (30)

�ar�k� ��

mX
i�j��

L�X
l�L�

	ijhir�k � l�h�jr�k � l�� k � Z� (31)

where diagf� � �g denotes a diagonal matrix with the diagonal ele-
ments built from its arguments.

Here we note that the diagonal matrix �� is not positive semi-
definite but the diagonal matrix �� defined by

�� �� diagf������ � � � ��ng (32)
�r � diagf� � � � j�r�ar����j� j�r�ar���j� j�r�ar���j� � � �g (33)

is positive semi-definite. It is clear from the definitions (29) and (32)
that there exists a sign matrix �I such that ��= �� �I , where the sign
matrix �I is defined as a diagonal matrix whose diagonal elements
are either �� or ��.

In (27), let 	ij � � for i � j and 	ij � � for i �� j, then �ar�k�’s
of the diagonal elements of �� become

�ar�k� �

mX
i��

L�X
l�L�

jhir�k � l�j� � �� r � �� n� k � Z� (34)

Therefore, all the diagonal elements of �� and �� are nonzero except
for pathological cases. To avoid completely such pathological cases,
the parameters L� and L� in (6) should be chosen to be enough large
negative and positive values (let us say, �
 and �
), respectively.
Then �ar�k� in (34) approaches to �ar ��

Pm

i��

P
l�Z

jhir�l�j
�,

where �ar is positive for all r � �� n under A1.
Theorem 2: Let

�wi���� �� � �H
H
�� �H�y �H

H
���gi� i � �� n� (35)

and
�wi���� �� � �H

H
�� �H�y �H

H
���gi� i � �� n� (36)

where �� and �� are diagonal invertible matrices, and �H and �gi’s are
defined by (12) and (8) (along with (9)), respectively. Then
(a) If �� = �� or �� = ���, then

�wi���� � �wi����� i � �� n� (37)
(b) If H�z� satisfies assumption A1 and the dimension L of vectors
�wi���� and �wi���� is infinite (i.e., this corresponds to the case L �
L� � L� � � with L� � �
 and L� � �
), then

�wi���� � �wi����� i � �� n� (38)
To prove the statement (b) of theorem 2, we have recourse to the

following lemma.
Lemma 1: Let A be a bounded linear operator of a Hilbert space

X into a Hilbert space Y such that Im A is closed, and B be a
bounded linear operator of the Hilbert space Y into a Hilbert space
Z such that Im B is closed. Then the following facts hold true.
(a) If Ker A � f�g, then AyA � I.

(b) If Im A = �Ker B��, then �BA�y = AyBy.
The proof of Lemma 1 is omitted for page limit.

Remark 1: In the finite dimensional case (i.e., the case when A
and B are matrices of finite dimension), Lemma 1 is easily proved
from the definition of the pseudoinverse (see [4], Section 12.8).
However, in the infinite dimensional case (i.e., the case when A and
B are linear operators on Hirbert spaces), it is difficult a little, but
is proved using properties of the pseudoinverses of linear operators
[5].

Proof of theorem 2: (a) If �� = ��, then (37) follows immediately
from (35) and (36). If �� = ���, then (37) also follows immediately
from (35) and (36).
(b) First we shall show

Ker �H
H

� f�g� (39)
under the conditions that H�z� satisfies A1 and that L� � �
 and
L� � �
. We note that �H becomes a matrix of infinite number of
rows and infinite number of columns. Thus, we consider the set l�
of column vectors of infinite elements xi’s defined by

l� �� f�� � �x�� x�� � � ��
T �

X
i�Z

jxij
� �
g� (40)

Then the set l� is a Hilbert space, and �H can be regarded as a linear
operator of l� into l�. Under the condition that H�z� is stable (i.e.,
the impulse response hij�t� of H�z� satisfies

P
i�j�Z

jhij�t�j �

), H is a bounded linear operator with the closed image. Thus we
can use Lemma 1 for �H . Let

�y �� �H
T
�s� �s � l�� (41)

where we use the same notation as in (8) and (9) for the elements
of �y and �s, and thus they are defined as

�y ��
�
y
T
� �y

T
� � � � � � y

T
m

�T
� (42)

yi �� �� � � � yi����� yi���� yi���� � � �	
T � i � ��m� (43)

�s ��
�
s
T
� � s

T
� � � � � � s

T
n

�T
� (44)

si �� �� � � � si����� si���� si���� � � �	
T � i � �� n� (45)

In the time domain, (41) is equivalent to

y�t� �

�X
k���

H�k�s�t� k�� t � Z� (46)

Therefore, suppose �y = 0 which is equivalent to y�t� � � for all
t � Z. If follows from (46) and A1 that s�t� � � for all t � Z,
which is equivalent to �s � �. Taking the complex conjugates of
elements on the both side of (41), we obtain

Ker �H
H

� f�g� (47)
On the other hand, it is well known (see [5])

Ker �H
H

� �Im �H��� (48)
Since �� and �� are invertible, it follows from (47)

Ker �H
H
�� � f�g and Ker �H

H
�� � f�g� (49)

Using the statement (b) in Lemma 1, (35) becomes

�wi���� � �H
y
� �H

H
���y �H

H
���gi� i � �� n� (50)

and (36) becomes

�wi���� � �H
y
� �H

H
���y �H

H
���gi� i � �� n� (51)

Using the statement (a) in Lemma 1, (50) becomes

�wi���� � �H
y
�gi� i � �� n� (52)

and (51) becomes

�wi���� � �H
y
�gi� i � �� n� (53)

Therefore, we obtain equalities
�wi���� � �wi����� i � �� n� (54)

This completes the proof of theorem 2.
Remark 2: Based on the statement (b) in theorem 2, if the pa-

rameters L� and L� of the deconvolver in (11) are chosen to be
respectively enough large negative and positive values (let us say,
L� � �
 and L� � �
), then we have approximate relations

�wi���� � �wi����� i � �� n� (55)
Therefore, the proposed method can be applied to the case when the

3600



Fig. 2. The performances for the proposed RSEM and the conventional
SEM.

signs of the fourth-order cumulants �i (i � �� n) are different (let
us say, we can treat sub-gaussian and super-gaussian signals as the
elements of source vector s�t�).

Moreover, if the MIMO system H�z� is an causal and equalizable
FIR system, then there exists an minimum order L��H� of its
deconvolvers which attains perfect equalization in the noiseless case.
Then it may be conjectured that equalities in (54) hold true if
L � L��H�. However, this is outside the scope of the paper.

For the time being, in the present paper, we consider (27) with 	ij
= 1 for i � j and 	ij = 0 for i �� j. As for �H

H
�� �H , (27) can be

estimated recursively by the fourth-order cumulants block matrices
of y�t� using moving averages as shown in [7].

Moreover, as for �H
H
���gi, by using (22) with aj�k� = �aj�k� in

(34) and the similar way as in [2], it can be calculated by
�Di �� �dTi��d

T
i�� � � � �d

T
im	T � (56)

�dij 	l �� cumfzi�t�� zi�t�� z
�
i �t�� y

�
j �t� l�g� (57)

i � �� n� j � �� m� l � L�� L� � �� � � � � L��
Then (25) can be expressed as

�w
���
i �� �C

y
�Di� i � �� n� (58)

Since the second step (23) is a normalization of �gi, it is easily shown
that the second step reduces to

�w
���
i � �w

���
i 


p
��zi l � �� n� (59)

Therefore, (58) and (59) are our proposed two steps to modify �wi,
which constitutes one cycle of iterations in the super-exponential
method [1]-[3]. Then since the right-hand side of (58) consists of
only fourth-order cumulants, the modification of �wi is not affected by
Gaussian noise. This comes from the fact that higher-order cumulants
are insensitive to additive (even colored) Gaussian noise. This is
a novel key point of our proposed super-exponential method, from
which the proposed method is referred also to as a robust super-
exponential method (RSEM).

IV. SIMULATION RESULTS

To demonstrate the validity of the proposed RSEM, many computer
simulations were conducted. The deflation method [2] was employed
for the proposed RSEM in our simulations. Only one of the sim-
ulation results is shown in this section. We considered an MIMO
channel with two inputs and three outputs, and assumed that the
length of channel is three (K � �), that is H�k�s in (1) were set to
be

H�z� �

�X
k��

H�k�zk �


���� � ���z � ����z� ��� � ���z � ���z�

��� � ����z � ����z� ���� � ���z � ����z�

���� � ����z � ����z� ���� � ����z � ����z�

�
� (60)

The length of the deconvolver was chosen to be five (L � ). We
set the values of the tap coefficients to be zero expect for w�
�

�� = w
�
�
��

= 1. Two source signals s��t� and s��t� were 4-QAM and 8-QAM
signals, respectively. The parameter p and q in (5) were set to be p
= 2 and q = 1, that is, �j (j = 1,2) in (18) were the fourth-order
cumulants of the source signals. Three independent Gaussian noises
(with identical variance ��n) were added to the three outputs yi�t�’s
at various SNR levels. The SNR is, for convenience, defined as SNR
:= 10 log����

�
si

��n�, where ��si ’s are the variances of si�t�’s and

are equal to 1.
As a measure of performance, we used the multichannel intersym-

bol interference (MISI) [2],[6]. The value of MISI becomes �
,
if �gl’s in (7) are obtained, and hence a minus large value of MISI

indicates the proximity to the desired solution. As a conventional
method, the method (SEM) proposed in [2] was used for comparison.

Fig. 2 shows the results of performances for both the proposed
RSEM and the conventional SEM when the SNR levels were respec-
tively taken to be 0[dB] (��n = 1), 2.5[dB], 5[dB], 10[dB], and 

[dB] (��n = 0), in which each MISI shown in Fig. 2 was the average
of the performance results obtained by 5 independent Monte Carlo
runs. In each Monte Carlo run, �C and �Di were estimated by data
samples in the following two cases; (Case 1) 10,000 data and (Case
2) 30,000 data.

It can be seen from Fig. 2 that the proposed RSEM shows better
performance than the conventional SEM at SNR less than 10 dB,
and as the number of data samples which are needed to estimate
the cumulants increases, the proposed RSEM shows much better
performance. ,

This implies that the performance of the RSEM depends on the
accuracy of the estimates of the higher-order cumulants. We conclude,
however, that since in the above two cases, the performances of the
RSEM are better than the ones of the conventional SEM for noisy
cases, the proposed RSEM is effective for solving the multichannel
blind deconvolution problem.

V. CONCLUSIONS

We proposed an RSEM for deconvolving blindly MIMO-IIR chan-
nels in the presence of Gaussian noise. It can treat such general cases
as some of the source signals are sub-gaussian and the remainder are
super-gaussian. It was shown from the simulation results that the
proposed RSEM is robust to Gaussian noise and can successfully
solve the multichannel blind deconvolution problem.
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