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Abstract— The present paper deals with the blind equalization
problem of a single-input single-output infinite impulse response
(SISO-IIR) system with additive Gaussian noise. To solve the
problem, we propose a new ”super-exponential method” (SEM).
The novel point of the proposed SEM is that even when Gaussian
noise is added to the output of the system, the blind equalization
can be achieved with as little influence of Gaussian noise as
possible; hence the proposed SEM is referred to as a ”robust
super-exponential method” (RSEM). Simulation results show the
validity of the proposed RSEM.

I. INTRODUCTION

In applications such as (mobile or wireless) communica-
tions, an input signal often propagates through a multipath
environment of unknown transfer function between the signal
source and a receiver. Blind equalization is used to reconstruct
the original input signal and/or to estimate the transfer function
from the received signal.

Recently Shalvi and Weinstein proposed an attractive ap-
proach for the blind equalization of SISO system, which is
called the super-exponential method (SEM) [6]. One of the
attractive properties of the SEM is to converge to the desired
solutions, which achieve the blind equalization, at super-
exponential rate; hence the ”super-exponential” method was
named. However, the SEM has such a significant drawback
that if the SEM is applied to the blind equalization in the
presence of additive Gaussian noise, then the convergence of
the SEM close to the desired solutions cannot be guaranteed
[6]. In this paper, a new approach is proposed in order
to overcome the drawback. In the proposed approach, only
higher-order cumulants are used; consequently the proposed
algorithm can be used to detect the desired solutions with
as little the influence of Gaussian noise as possible, from
which the proposed SEM is referred to as a robust super-
exponential method (RSEM). Computer simulations are pre-
sented to demonstrate the validity of the proposed RSEM.

II. PROBLEM FORMULATION AND ASSUMPTIONS

We consider a single-input single-output (SISO) system with
an additive noise as described by

y(t) =

∞∑

k=−∞

h(k)s(t − k) + n(t), (1)

where {s(t)} is an unobserved input sequence generated from
a discrete-time stationary random process, h(k) is the impulse
response of an unknown time-invariant system defined by
H(z) =

∑∞
k=−∞h(k)zk, y(t) and n(t) denote the output of

the system and Gaussian noise, respectively. Fig. 1 illustrates
a diagram of the basic problem. Namely, our objective in this
paper is to propose a method for adjusting the equalizer W (z)
=

∑L2

k=−L1
w(k)zk so that G(z) := W (z)H(z) becomes

Ĝ(z) = Ŵ (z)H(z) = czk1 , (2)

even if the Gaussian noise n(t) is included into the output
y(t), where c in czk1 is a nonzero complex number standing
for a scale change and a phase shift, and the superscript ”k1”
of zk1 denotes an integer standing for a constant delay. We
allow all of the above signals to be complex-valued.

To find the solution (2), we put the following assumptions
on the system, the input signal, and the equalizer.
A1) The unknown system H(z) is a stable, possibly nonmin-
imum phase, linear time-invariant filter whose inverse (which
may be noncausal and stable) H(z)−1 exists.
A2) The input sequence {s(t)} is a complex, zero-mean, non-
Gaussian random process. Moreover, the process {s(t)} is an
i.i.d. process with a nonzero variance σ2

s and a nonzero (p +

y(t)s(t) x(t)

n(t)

H(z) W(z)

Fig. 1. The composite system of an unknown system and a filter.
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q + 1)st-order cumulants, κs defined as

κs = cum{s(t), · · · , s(t)
︸ ︷︷ ︸

p

, s∗(t), · · · , s∗(t)
︸ ︷︷ ︸

q+1

}, (3)

where p and q are nonnegative integers such that (p+q)≥2, and
cum{s1, s2, · · ·, sn} denotes the nth-order (joint) cumulant
of s1, s2, · · ·, sn.
A3) The equalizer W (z) =

∑L2

l=L1
w(k)zk is an FIR system

of sufficient length L = L2 − L1 + 1 so that the truncation
effect can be ignored.

The combined system response subject to the finite length
restriction is

g(k) =

L2∑

l=L1

w(l)h(k−l). (4)

In a vector notation, (4) can be rewritten as

g = Hw, (5)

where g is the possibly infinite vector of the combined system
g = [· · ·, g(−1), g(0), g(1),· · ·]T , w is the L-column vector, that
is, w = [w(L1), w(L1+1),· · ·, w(L2)]T , and H = [hkl] is the
matrix of L columns and possibly infinite number of rows,
whose elements are hkl = h(k−l), k = −∞,· · ·, ∞, l = L1,
(L1 + 1),· · ·, L2.

III. ROBUST SUPER-EXPONENTIAL METHODS (RSEMS)

A. Two-step iterative procedure of vector g

To find the solution in (2), the following two-step iterative
procedure with respect to the elements g(k)’s of g is used:

g(k)[1] =
κs

γsαk

(g(k))p(g(k)∗)q, (6)

g(k)[2] = g(k)[1]/
√

σ2
x, (7)

where (·)[1], (·)[2] stand for the results of the first step and
the second step per iteration, g(k) in the right-hand side of
(6) is g(k)[2] at the previous step (note that at first iteration,
g(k) in the right-hand side of (6) is the initial value of g(k)),
p and q are nonnegative integers such that (p + q) ≥ 2, γs

denotes the fourth-order cumulant of s(t) defined by γs :=
cum{s(t), s(t), s∗(t), s∗(t)}, αk denotes a positive value (in
subsection III.B, it will be shown how we choose the values
of αk’s), the superscript ∗ denotes the complex conjugate, and
σ2

x denotes the variance of x(t), which is the output of the
equalizer W (z) (see Fig. 1).

The main difference between the two-step procedures in
the conventional SEMs (e.g., [1], [2], [4], [5], [6], [8]) and
the proposed one is the denominator of the first step, that
is, the conventional first step procedures include the second-
order cumulants of s(t), whereas our proposed one, that is,
(6) possesses only higher-order cumulants of s(t).

Here, let g(k)(i) denote the value obtained in the ith cycle
of the iterations of two steps (6) and (7). The important fact
of the two-step procedure is that the infinite values g(k)(i)
(k = −∞, · · · ,∞) converge to zero except for only one of
the values as the iteration number i approaches infinity, that

is, i → ∞. The magnitude of the remaining one converges
to a positive constant. This will be shown in the following
theorem.

Theorem 1: Let g(k)(0) be an initial value for iterations of
two steps (6) and (7) for each k = −∞, · · · ,∞. Let βk be
non-negative scalar defined as

βk = |
1

αk

|
1

p+q−1 . (8)

Let k0 be k0 = arg maxk∈{−∞,···,∞} βk|g
(k)(0)|. Suppose the

index k0 is unique, that is, βk0
|g(k0)(0)| > βk|g

(k)(0)| for any
other k ∈ {−∞, · · · ,∞}, then as i → ∞, it follows

lim
i→∞

|g(k)(i)| =

{
0 for k 6= k0,
c̃ 6= 0 for k = k0,

(9)

where c̃ is a scalar positive constant.
Proof: From (6) and (8), choosing k0 so that g(k0)(i) 6=

0, we obtain

|g(k)[1](i)|

|g(k0)[1](i)|
=

βp+q−1
k

βp+q−1
k0

|g(k)[1](i − 1)|p+q

|g(k0)[1](i − 1)|p+q
, (10)

where the integer i denotes the iteration time. Note that
|g(k)[1](i)|/|g(k0)[1](i)| is not modified by the normaliza-
tion of the second step. Therefore, it is possible to solve
|g(k)[2](i)|/|g(k0)[2](i)| from the recursive formula (10), which
yields

|g(k)[2](i)|

|g(k0)[2](i)|
=

βk0

βk

(
βk

βk0

|g(k)[2](0)|

|g(k0)[2](0)|

)(p+q)i

(11)

for any non-negative integer i. For k0 = arg maxk βk|g
(k)(0)|,

one can see that all the other values |g(k)[2](i)| (k 6= k0)
quickly become small compared to |g(k0)[2](i)|. Taking into
account the normalization of the second step, this means
that |g(k0)[2](i)| 6= 0 and |g(k)[2](i)| → 0 for all k 6= k0.
This implies that the infinite iteration of two steps (6) and
(7) gives (9). Moreover, the equation (11) along with the
normalization of the second step means that the sequence
{g(k)(i)} converges to a desired value at a super-exponential
rate for all k = −∞, · · · ,∞.

B. Two-step iterative procedure for w

To find the solution Ŵ (z) in (2), we adjust the elements
of the vector w so that g = Hw is equal to the vector δ(k1)

whose nth element is cδ(n−k1) for some fixed k1, where δ(t)
is the Kronecker delta function and k1 is an integer standing
for the same time shift as k1 in (2). However, since w is
of finite length, it may be only required that w is chosen to
minimize the distance (norm) between Hw and δ(k1). Hence,
in order to derive an algorithm with respect to w, we consider
the following weighted least squares problem:

min
w

(Hw − g)T∗
Λ(Hw − g). (12)

Here, Λ is a diagonal matrix whose diagonal elements all are
positive values. The solution is known to be given by

w = (HT∗
ΛH)−1HT∗

Λg. (13)
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Note that from assumption A1), HT∗
ΛH is invertible for any

L, because H is of full column rank and Λ is a nonsingular
diagonal matrix (this fact is also mentioned in [6] (p. 508, line
10) without proof). The update rules of w in the conventional
and the proposed SEMs are based on (13).

In the conventional SEMs ([1], [2], [4], [5], [6], [8]), the
positive diagonal elements of Λ in (13) are set to 1 or
the variance of the input s(t). This means that HT∗

ΛH is
calculated by the second-order statistics of the output y(t). We
consider that this is the reason why the conventional SEMs are
sensitive to Gaussian noise.

In what follows, we shall show that HT∗
ΛH in (13) can

be applied to a set of fourth-order cumulants of the output
y(t), if we choose appropriately a diagonal matrix Λ in (12).
To this end, as the diagonal elements λk (k = −∞, · · · ,∞)
of Λ, we choose the λk’s expressed as

λk := sign(γs)γsα̃, k = −∞, · · · ,∞, (14)
α̃ :=

∑∞
l=−∞ |h(l)|2, (15)

where sign(γ) in (14) denotes the sign of γ, that is, sign(γ) =
1 if γ > 0, sign(γ) = 0 if γ = 0, and sign(γ) = −1 if γ < 0,
and h(l) in (15) denotes the impulse response of H(z). [We
note that the elements of Λ are positive values.] From (14)
and (15), Λ can be expressed as İΛ̃, where İ is a diagonal
matrix whose all elements are sign(γs), that is, +1 or −1, and
Λ̃ is also a diagonal matrix whose elements are γsα̃. Then
substituting İΛ̃ into Λ in (13), the right-hand side of (13)
becomes

(HT∗İΛ̃H)−1HT∗İΛ̃g. (16)

From (16), we obtain

(HT∗
Λ̃H)−1HT∗

Λ̃g, (17)

because İ is a diagonal matrix whose all elements are either
+1 or −1.

Here, HT∗
Λ̃H in (17) can be expressed by the fourth-order

cumulants matrix of y(t), which is defined by [C(4)
y,l ]r1,r2

=
cum{y(t − r1), y

∗(t − r2), y(t − l), y∗(t − l)} [7], that is,

HT∗
Λ̃H :=

∑∞
l=−∞C

(4)
y,l , (18)

where [X]r1,r2
denotes the (r1, r2)th element of the L × L

matrix X , in which ri’s take the values of L1, (L1+1), · · · , L2.
As for HT∗

Λ̃g in (17), by using (6) with αk = α̃ in (15) and
the similar way as in [2], it can be given by

d := [dL1
, dL1+1, · · · , dL2

]T , (19)

where dl’s are given by dl =
cum{x(t), · · · , x(t)

︸ ︷︷ ︸

p

, x∗(t), · · · , x∗(t)
︸ ︷︷ ︸

q

y∗(t − j)} (l = L1,

L1 + 1, · · · , L2). Therefore, it can be seen from (18) and
(19) that the right-hand side of (13) can be calculated by the
fourth-order statistics of the output y(t), provided that Λ in
(12) is replaced by İΛ̃. Then, (17) can be expressed as

w[1] = R−1d, (20)

where R:=
∑∞

l=−∞C
(4)
y,l . It can be easily shown that the

second step (7) is expressed as

w[2] := w[1]/
√

σ2
x. (21)

Therefore, (20) and (21) are our proposed two steps to modify
w.

From (20), it can be seen that since the update procedure
of w consists of only higher-order cumulants of y(t), then
the two-step procedure (20) and (21) becomes less sensitive to
Gaussian noise. [Note that since (21) is only used to normalize
w, even if σ2

x is a second-order statistic, there is less effect
of Gaussian noise for finding the desired solution ŵ, that is,
Hŵ=δ(k1).] This is a novel key point of our proposed SEM,
from which the proposed method is referred to as a robust
super-exponential method (RSEM).

IV. COMPUTER SIMULATIONS

To demonstrate the validity of the proposed method, many
computer simulations were conducted. Some results are shown
in this section. The unknown system H(z) was set to be a
filter of length 7 with the impulse responses (0.4, 1, −0.7,
0.6, 0.3, −0.4, 0.1), which is the same system as in [6]. We
used an equalizer of length L = 16 which was initialized to
w(0) = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T , which is also
the same situation as in [6]. The input s(t) of the system
H(z) was sub-Gaussian which takes one of two values, −1
and 1 with equal probability 1/2. The parameters p and q in
(6) were set to be p=2 and q=1, respectively, that is, κs in
(3) was the fourth-order cumulants of s(t). Then the value of
κs is −2. The Gaussian noise n(t) with its variance σ2

n was
included in the output y(t) at various SNR levels. The SNR
is, for convenience, defined as SNR := 10 log10(σ2

s /σ2
n), where

σ2
s is the variance of s(t) and is equal to 1. As a measure

of performance, we used the intersymbol interference (ISI)
defined in the logarithmic (dB) scale by

ISI = 10 log10

∑

k |g
(k)|2 − |gmax|

2

|gmax|2
(22)

where gmax is the component of g(k) having the maximal
absolute value (the leading tap). The value of ISI becomes
−∞ if g(k)’s satisfying (2) are obtained and hence a large
negative value of ISI indicates the proximity to the desired
solution.

For comparison, the SEM proposed in [6] was used. Fig. 2
shows the performances of the proposed RSEM and the SEM
proposed by Shalvi and Weinstein, in the cases where the
SNR levels were taken to be 0 dB (σ2

n=1) and ∞ dB (σ2
n=0),

and for each iteration, the vector w for each method was
modified every each data set of the following three cases
(i) 5,000 samples (Fig. 2(i)), (ii) 10,000 samples (Fig. 2(ii)),
and (iii) 30,000 samples (Fig. 2(iii)), by using the vector
d corresponding to each method, where the details of the
calculations of the vector d and the matrix R in (20) will
be found in [3]. The vertical and horizontal axes in Fig. 2
represent the average ISI denoted by <ISI> and the number
of iterations, respectively. For each SNR and in each of the
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Fig. 2. The average performances of the RSEM and the SEM with varying
number of iterations, in the three cases of (i) 5000 samples, (ii) 10000 samples,
(iii) 30000 samples, in each of which SNR = 0 dB and ∞ dB.

three cases, the methods were tested using 100 Monte Carlo
trials, and the <ISI> for each iteration was computed with the
results in the trials. Fig. 3 shows the average performances of
the RSEM and the SEM at the 10th iteration for Fig. 2.

From Fig. 2 and Fig. 3, it can be seen that for each data set,
in the case of SNR = 0 dB, as the number of data samples,
which are needed to estimate the cumulants, increases, the
RSEM gives better performance, whereas the performance of
the SEM hardly changes. In the case of SNR = ∞ dB, however,
it can be seen from Fig. 2 and Fig. 3 that the performance of
the RSEM becomes worse than that of the SEM. This has
resulted from the fact that it is difficult to estimate the fourth-
order cumulants of R in (20) with high accuracy, compared
with the second-order cumulants of R in the SEM. Namely,
this means that in order to estimate the matrix R in (20) with
high accuracy, the data more than 30000 samples are needed.
We consider that the property that a lot of data samples are
needed to estimate the fourth-order cumulants in the RSEM is
a drawback of the RSEM. Incidentally, we conform that when
the matrix R possesses its theoretical value, the performance

of the RSEM becomes similar to that of the SEM.
From these results, we can see that although the perfor-

mance of the RSEM depends on the accuracy of the estimate
of the higher-order cumulants, especially the matrix R in (20),
in the case of SNR = 0 dB (σ2

n = 1), the RSEM provides
significantly better performance than the SEM. Therefore, we
consider that the RSEM is effective for the blind equalization
of the system with additive Gaussian noise as shown in Fig. 1.

V. CONCLUSIONS

We have proposed an SEM for solving a blind equalization
problem, which is referred to as a robust super-exponential
method (RSEM). The RSEM is robust against Gaussian noise,
which means that the RSEM can be used to estimate the in-
verse of the unknown transfer function H(z), even if Gaussian
noise is added to the output of H(z) (see (1)). This is a
novel property of the proposed method, not possessed by the
conventional SEMs. Computer simulations have demonstrated
the validity of the RSEM.
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