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ABSTRACT

The so called ”super-exponential” methods (SEMs) are at-
tractive methods for solving multichannel blind deconvolu-
tion problem. The conventional SEMs, however, have such a
drawback that they are very sensitive to Gaussian noise. To
overcome this drawback, the robust super-exponential meth-
ods (RSEMs) were proposed for single-input single-output
infinite impulse response (SISO-IIR) channels and for multi-
input multi-output (MIMO) static channels (instantaneous
mixtures). While the conventional SEMs use the second-
and higher-order cumulants of observations, the RSEMs
use only the higher-order cumulants of observations. Since
higher-order cumulants are insensitive to Gaussian noise,
the RSEMs are robust to Gaussian noise. We proposed an
RSEM extended to the case of MIMO-FIR channels (convo-
lutive mixtures). To show the validity of the proposed RSEM,
some simulation results are presented.

1. INTRODUCTION

The present paper deals with the multichannel blind deconvo-
lution problem of finite-impulse response (FIR) channels of
MIMO communication systems [1]. To solve this problem,
the ideas of the super-exponential methods (SEMs) in [2]-[4]
are used. Several researchers (e.g., [2]-[4]) have so far pro-
posed some SEMs for solving independent component anal-
ysis (ICA), blind source separation (BSS) and blind channel
equalization (BCE). One of the attractive properties of the
SEMs is that the SEMs are computationally efficient and con-
verge to a desired solution at a super-exponential rate. How-
ever, almost all the conventional SEMs have such a drawback
that they are very sensitive to Gaussian noise, because the
conventional SEMs utilize the second-order and the higher-
order cumulants of observations.

To overcome the drawback, Kawamoto et al. proposed
new SEMs for SISO-IIR channels [8] and for MIMO static
channels (instantaneous mixtures) [7], and Kohno et al. pro-
posed new SEMs for MIMO-IIR channels (convolutive mix-
tures) [9]. The proposed SEMs utilize only the higher-
order cumulants of observations, and hence the proposed
SEMs become robust to Gaussian noise, so that the proposed
SEMs are referred to as robust super-exponential methods
(RSEMs).

One may extend directly the previous idea of RSEMs to
the case of MIMO channels (convolutive mixtures) when all
the source signals are sub-Gaussian or super-Gaussian. How-
ever, this is not the case in general. The extension of the idea
is not straightforward in the case when the source signals are

of different types. Kohno et al. showed the perfect solution
of blind deconvolution for MIMO-IIR channels in that case
by making the length of the equalizer infinite (or considering
an IIR equalizer).

The purpose of the present paper is to extend the idea
for MIMO-IIR channels to the case of MIMO-FIR channels
(convolutive mixtures) in the presence of Gaussian noise and
to propose an RSEM to this case. We show an approximate
solution of blind deconvolution for a MIMO-FIR channel by
making the length of the equalizer very large, and we show
that the proposed RSEM treats such general cases as some
of the source signals are sub-Gaussian and the remainder are
super-Gaussian. Simulation results are presented to show the
effectiveness of the proposed RSEM.

The present paper uses the following notation: Let Z de-
note the set of all integers. Let C denote the set of all com-
plex numbers. Let Cm�n denote the set of all m�n ma-
trices with complex components. The superscripts T , �, H
and y denote, respectively, the transpose, the complex con-
jugate, the complex conjugate transpose (Hermitian) and the
(Moore-Penrose) pseudoinverse operations of a matrix or a
linear operator. The symbols Ker A and Im A denote the
kernel and the image of matrix A, respectively. The super-
script � denotes the orthogonal complement of a subspace.
Let i = 1�n stand for i� 1�2� � � � �n.

2. PROBLEM FORMULATION

We consider a MIMO-FIR channel with n inputs and m out-
puts as described by

y�t� �
K�1

∑
k�0

H�k�s�t�k��n�t�� t � Z� (1)

where s�t� is an n-column vector of input (or source) signals,
y�t� is anm-column vector of channel outputs, n�t� is an m-
column vector of Gaussian noises, and fH �k�g is an m�n
impulse response matrix sequence. The number K denotes
its length. The transfer function of the channel is defined by

H�z� �
K�1

∑
k�0

H�k�z�k� z � C� (2)

To recover the source signals, we process the output sig-
nals by an n�m deconvolver (or equalizer)W �z� described
by

z�t� �
L�1

∑
k�0

W �k�y�t�k�
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�
K�L�2

∑
k�0

G�k�s�t�k��
L�1

∑
k�0

W �k�n�t�k�� (3)

where the number L is the length of the deconvolver, and
fG�k�g is the impulse response of the cascade system of the
unknown system H�z� and the deconvolver W �z� defined
by

G�k� :�
L�1

∑
��0

W ���H�k���� k � 0�K�L�2� (4)

Here we should note that the length of the cascade system is
K�L�1.

The objective of multichannel blind deconvolution is to
construct a deconvolver that recovers the original source sig-
nals only from the measurements of the corresponding out-
puts.

We put the following assumptions on the channel and the
source signals.
A1) The channel system H�z� is an FIR system which is
equalizable. The equalizability condition of H�z� means
thatH�z� has no zero on z-plane except for the origin z � 0
[10], which is equivalent to

rankH��� � n for all nonzero � � C� (5)
A2) The input sequence fs�t�g is a complex, zero-mean
non-Gaussian random vector process with element processes
fsi�t�g, i = 1�n being mutually independent. Each ele-
ment process fsi�t�g is an independently and identically dis-
tributed (i.i.d.) process with a variance � 2

i �� 0 and a fourth-
order cumulant �i �� 0. Moreover, each element process
fsi�t�g has nonzero �p�q�1� st-order cumulants � i defined
as

�i � cumfsi�t�� � � � �si�t�� �z �
p

�s�i �t�� � � � �s�i �t�� �z �
q�1

g �� 0� (6)

where p and q are nonnegative integers such that p� q � 2.
A3) The deconvolver (or equalizer) W �z� is an FIR system
of length L � Lo�H�, where Lo�H� is the minimum length
of its deconvolvers which attain perfect equalization ofH�z�
in the noiseless case (see Remark 1 below).
A4) The noise sequence fn�t�g is a zero-mean, Gaussian
vector stationary process.
A5) The two vector sequences fn�t�g and fs�t�g are mutu-
ally statistically independent.

Remark 1. The assumption on A1) means that the unknown
system H�z� has less inputs than outputs, i.e., n � m and
that there exists an FIR left inverse of H�z�. Moreover, if
H�z� has no zero on the z-plane, that is, it is irreducible in
the sense that it satisfies

rankH��� � n for all � � C� (7)
then there exists an equalizer W �z� of length L�n�K�1�,
where K is the length of the channel [10]. Besides, it is
shown in [4] that there exists generically (or except for patho-
logical cases) an equalizer W �z� of length L� d n�K�1�

m�n
e,

where dxe stands for the smallest integer that is greater than
or equal to x.

In a vector form, (4) can be written as
g̃i � H̃w̃i� i� 1�n� (8)

where g̃i is the column vector consisting of the ith output
impulse response of the cascade system defined by

g̃i :�
�
gTi1�g

T
i2� � � � �gTin

�T
� (9)

gij :� �gij�0��gij�1�� � � � �gij�K�L�2��T � (10)

where gij�k� is the (i�j)th element of matrix G�k�, and w̃i

is the mL-column vector consisting of the tap coefficients
(corresponding to the ith output) of the deconvolver defined
by

w̃i :�
�
wT
i1�w

T
i2� � � � �wT

im

�T �CmL� (11)

wij :�
h
wij

�0��wij
�1�� � � � �wij

�L�1�
iT

�CL� (12)

where wij
�k� is the (i�j)th element of matrix W �k�, and H̃

is the n�m block matrix defined by

H̃ :�

�
���
H11 H12 � � � H1m
H21 H22 � � � H2m

...
...

...
...

Hn1 Hn2 � � � Hnm

�
		
 � (13)

whose �i�j�th block elementH ij is the matrix (ofL columns
andK�L�1 rows) with the �l�r�th element �H ij �lr defined
by

�H ij �lr :� hji�l� r��

l � 0�1� � � � �K�L�2� r � 0�1� � � � �L�1� (14)
Here hij�n� � 0 for n � 0.

In the multichannel blind deconvolution problem, we
want to adjust w̃i’s (i = 1�n) so that

�g̃1� � � � � g̃n� � H̃�w̃1� � � � �w̃n� � ��̃1� � � � � �̃n�P � (15)
where P is an n�m permutation matrix, and �̃i is the n-
block column vector defined by

�̃i :� ��Ti1��
T
i2� � � � ��

T
in�

T � (16)

�ij :�

��



�̂i� if i� j�
�0�0� � � � �0� �z �

K�L�1

�T � otherwise� (17)

Here, �̂i is the column vector (of K�L�1 elements) whose
rth element �̂i�r� given by

�̂i�r� � di��r�ki�� (18)
where ��t� is the Kronecker delta function, d i is a complex
number standing for a scale change and a phase shift, and k i
is a integer standing for a time shift.

3. ROBUST SUPER-EXPONENTIAL METHODS

3.1 Two-step iterative procedure for vector g̃ i
To find solutions in (15), the following two-step iterative pro-
cedure with respect to the elements gij , j � 1�n of the vector
g̃i is used:

g
�1�
ij �k� �

�j
aj�k��j

�gij�k��
p�g�ij�k��

q � j � 1�n� (19)

g
�2�
ij �k� �

g
�1�
ij �k�q
�2
zi

� j � 1�n� (20)

where gij�k� in the right-hand side of (19) is an element of
g̃i before the iteration, ����1� and ����2� stand for the results
of the first step and the second step per iteration, p and q
are nonnegative integers such that p� q � 2, aj�k� denotes
a positive number (in Subsection 3.2, it will be shown how
we choose the values of aj�k�’s), �j denotes the fourth-order
cumulant of sj�t�, that is, �j is equal to �j in case of p = 2
and q = 1, and �2

zi
denotes the variance of the output signal

zi�t�. Equation (19) is derived by replacing � 2
j of (26) in [3]

with aj�k��j , where �2
j denotes the second-order cumulant
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of sj�t�, and (20) is used to normalize g �1�
ij obtained by (19).

Here it should be noted that in the conventional two-step
procedures (e.g., [2]-[4]), the denominator of the right-hand
side of (19) was set to be 1 or the variance of sj�t�, whereas
we consider the fourth-order cumulant of s j�t�, i.e., �j .

Let g�l�ij �k� denote the value obtained in the lth cycle
of the iterations of two steps (19) and (20). The important

fact of the two-step procedure is that the n values g
�l�
ij �k�

(j � 1�n) converge to zero except for only one of the values
as the iteration number l approaches infinity, that is, l	 ∞.
The magnitude of the remaining one converges to a positive
constant. This will be shown in the following theorem.

Theorem 1. Let g�0�ij �k� be an initial value for iterations
of two steps (19) and (20) for each j � 1�n and k � Z. Let
�j�k� be a non-negative scalar defined as

�j�k� �

���� �j
aj�k��j

����
1

p�q�1

� (21)

Let ji and ki be �ji�ki� � argmax�j�k��j�k�jg�0�ij �k�j.
Suppose the index ji and ki are unique, that is,

�ji�ki�jg�0�iji
�ki�j 	 �j�k�jg�0�ij �k�j for any other j and k.

Then as l	 ∞, it follows

lim
l�∞

jg�l�ij �k�j�
�

0� for j �� ji� k �� ki�
c̃j�k� �� 0� for j � ji� k � ki�

(22)

where c̃j�k� is a scalar positive constant.
Since Theorem 1 may be proven by using the similar way

as in [7], the proof of Theorem 1 is omitted for page limit.
For notational simplicity, we confine ourselves to the case

p � 2 and q � 1 (which gives a solution in terms of fourth-
order cumulants), although our results are expandable to a
general �p�q� case (higher order cumulant case).

We turn to the two-step procedure (19) and (20) with p�
1, q � 2 and �j � �j (j � 1�n). It becomes

g
�1�
ij �k� �

1
aj�k�

�gij�k��
2�g�ij�k��� j � 1�n� (23)

g
�2�
ij �k� �

g
�1�
ij �k�q
�2
zi

� j � 1�n� (24)

3.2 Two-step iterative procedure for vector w̃ i

Since the parameters gij�k�’s involve implicitly the unknown
parameters hij�k�’s, the two-step procedure cannot be han-
dled directly. Therefore, by solving the following weighted
least squares problem, we derive an algorithm with respect
to wij ’s so that the two steps (23) and (24) can be handled
directly.

min
w̃i

�H̃w̃i� g̃i�H Λ̃�H̃w̃i� g̃i�� i� 1�n� (25)

Here, Λ̃ is a diagonal matrix with positive diagonal elements.
The solutions are known to be given by

w̃i � �H̃
H Λ̃H̃�†H̃

H Λ̃g̃i� i� 1�n� (26)
In the conventional methods [2]-[4], the positive diagonal el-
ements of Λ̃ are set to be 1 or the variances of the source sig-
nals. This means that H̃

H Λ̃ H̃ is calculated by the second-
order statistics of the observed signal y�t�. We are convinced
that this is the reason why the conventional methods are sen-
sitive to Gaussian noise.

In what follows, we shall show that the weighted least
squares approach in (25) can be applied to a set of fourth-
order cumulants of the observed signals y i�t� (i � 1�m), if
we choose appropriately a diagonal matrix Λ̃ in (25). To
this end, we introduce fourth-order cumulants matrices of
m-vector random process fy�t�g, which constitute a set of

m�m block matrices C̃
�4�
yi�j�l

, whose elements are defined
by
h
C̃

�4�
yi�j�l

i
�p�q�l1l2

� cumfyq�t� l2��y
�

p�t� l1��yj�t� l��y�i �t� l�g�

p�q� i�j � 1�m� l1� l2 � 0�L� 1� l � 0�K�L�2� (27)

where ����p�q�l1l2 denotes the (l1� l2)th element of the (p�q)th

block matrix of the matrix C̃
�4�
yi�j�l

. Then, we consider an

m�m block matrix C̃ expressed by

C̃ �
m

∑
i�j�1

K�L�2

∑
l�0


ijC̃
�4�
yi�j�l

� (28)

where 
ij ’s are either 1 or 0, which represent design param-
eters. It is shown by a simple calculation that (28) becomes

C̃ � H̃
H Σ̃H̃� (29)

where Σ̃ is a diagonal matrix defined by
Σ̃ :� diagfΣ1�Σ2� � � � �Σng� (30)

Σr :� diagf�rãr�0���rãr�1�� � � � ��rãr�K�L�2�g�r� 1�n�
(31)

ãr�k� :�
m

∑
i�j�1

K�L�2

∑
l�0


ijhir�k�l�h�jr�k�l��k� 0�K�L�2�

(32)
where diagf� � �g denotes a diagonal matrix with the diagonal
elements built from its arguments.

Here we note that the diagonal matrix Σ̃ is not positive
semi-definite but the diagonal matrix Λ̃ defined by
Λ̃ :� diagfΛ1�Λ2� � � � �Λng� (33)
Λr � diagfj�rãr�0�j� j�rãr�1�j� � � � � j�rãr�K�L�2�jg(34)
is positive semi-definite. It is clear from the definitions (30)
and (33) that there exists a sign matrix İ such that Λ̃= Σ̃İ ,
where the sign matrix İ is defined as a diagonal matrix whose
diagonal elements are either �1 or �1.

In (28), let 
ij � 1 for i � j and 
ij � 0 for i �� j, then
ãr�k�’s of the diagonal elements of Σ̃ become

ãr�k��
m

∑
i�1

K�L�2

∑
l�0

jhir�k�l�j2 � 0�r� 1�n�k� 0�K�L�2�

(35)
Therefore, all the diagonal elements of Σ̃ and Λ̃ are nonzero
except for pathological cases.
Theorem 2. Let

w̃i�Λ̃� :� �H̃
H Λ̃H̃�†H̃

H Λ̃g̃i� i� 1�n� (36)
and

w̃i�Σ̃� :� �H̃
H Σ̃H̃�†H̃

H Σ̃g̃i� i� 1�n� (37)

where Λ̃ and Σ̃ are diagonal invertible matrices, and H̃ and
g̃i’s are defined by (13) and (9) (along with (10)), respec-
tively. Then
(a) If Λ̃ = Σ̃ or Λ̃ = �Σ̃, then

w̃i�Λ̃� � w̃i�Σ̃�� i� 1�n� (38)
(b) If H�z� satisfies Assumption A1) and the length L is
infinite (i.e. L��∞), then

w̃i�Λ̃� � w̃i�Σ̃�� i� 1�n� (39)
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To prove the statement (b) of Theorem 2, we have recourse

to the following lemma.

Lemma 1. Let A andB are matrices of infinite dimension.
Then the following facts hold true.
(a) If KerA� f0g, thenA†A� I .
(b) If Im A = �Ker B��, then �BA�† = A†B†. The proof

of Lemma 1 is omitted for page limit.

Proof of Theorem 2.
(a) If Λ̃ = Σ̃, then (38) follows immediately from (36) and
(37). If Λ̃ = �Σ̃, then (38) also follows immediately from
(36) and (37).
(b) Suppose L��∞. Let

ỹ :� H̃
T
s̃� (40)

where we use the same notation as in (9) and (10) for the
elements of ỹ and s̃, and thus they are defined as

ỹ :�
�
yT1 �y

T
2 � � � � �yTm

�T
� (41)

yi :� �yi�0��yi�1�� � � ��T � i� 1�m� (42)

s̃ :�
�
sT1 �s

T
2 � � � � �sTn

�T
� (43)

si :� �si�0��si�1�� � � ��T � i� 1�n� (44)
In the time domain, (40) is equivalent to

y�t� �
K�1

∑
k�0

H�k�s�t�k�� t� 0�1�2� � � � � (45)

Therefore, suppose ỹ � 0 which is equivalent to y�t� � 0 for
all t � 0�1�2� � � �. If follows from (45) and A1) that s�t� � 0
for all t� 0�1�2� � � �, which is equivalent to s̃� 0. Taking the
complex conjugates of elements on the both side of (40), we
obtain

Ker H̃
H

� f0g� (46)
On the other hand, it is well known (see [6])

Ker H̃
H

� �Im H̃��� (47)
Since Λ̃ and Σ̃ are invertible, it follows from (46)

Ker H̃
H Λ̃ � f0g and Ker H̃

H Σ̃ � f0g� (48)
Using the statement (b) in Lemma 1, (36) becomes

w̃i�Λ̃� � H̃
†
�H̃

H Λ̃�†H̃
H Λ̃g̃i� i� 1�n� (49)

and (37) becomes

w̃i�Σ̃� � H̃
†
�H̃

H Σ̃�†H̃
H Σ̃g̃i� i� 1�n� (50)

Using the statement (a) in Lemma 1, (49) becomes

w̃i�Λ̃� � H̃
†
g̃i� i� 1�n� (51)

and (50) becomes

w̃i�Σ̃� � H̃
†
g̃i� i� 1�n� (52)

Therefore, we obtain equalities
w̃i�Λ̃� � w̃i�Σ̃�� i� 1�n� (53)

This completes the proof of Theorem 2.

Remark 2. Based on the statement (b) in Theorem 2, if
the parameter L of the deconvolver in (12) is chosen to be
enough large positive values (let us say, L 
 �∞), then we
have approximate relations

w̃i�Λ̃�
 w̃i�Σ̃�� i� 1�n� (54)
Therefore, the proposed method can be applied to the case
when the signs of the fourth-order cumulants � i (i � 1�n)
are different (let us say, we can treat sub-Gaussian and super-
Gaussian signals as the elements of source vector s�t�).

For the time being, in the present paper, we consider (28)

with 
ij = 1 for i� j and 
ij = 0 for i �� j. As for H̃
H Σ̃H̃,

(28) can be estimated recursively by the fourth-order cumu-
lants block matrices of y�t� using moving averages as shown
in [8].

Moreover, as for H̃
H Σ̃g̃i, by using (23) with aj�k� =

ãj�k� in (35) and the similar way as in [3], it can be calcu-
lated by

D̃i :� �dTi1�d
T
i2� � � � �dTim�T � (55)

�dij �l :� cumfzi�t��zi�t��z�i �t��y�j �t� l�g� (56)

i� 1�n� j � 1�m� l � 0�1� � � � �L�1�
Then (26) can be expressed as

w̃
�1�
i :� C̃

†
D̃i� i� 1�n� (57)

Since the second step (24) is a normalization of g̃ i, it is easily
shown that the second step reduces to

w̃
�2�
i � w̃

�1�
i �

q
�2
zi

i� 1�n� (58)

Therefore, (57) and (58) are our proposed two steps to mod-
ify w̃i, which constitutes one cycle of iterations in the super-
exponential method [2]-[4]. Then since the right-hand side
of (57) consists of only fourth-order cumulants, the modifi-
cation of w̃i is not affected by Gaussian noise. This comes
from the fact that higher-order cumulants are insensitive to
additive (even colored) Gaussian noise. This is a novel key
point of our proposed super-exponential method, from which
the proposed method is referred also to as a robust super-
exponential method (RSEM).

4. SIMULATION RESULTS

To demonstrate the validity of the proposed RSEM, many
computer simulations were conducted. The deflation method
[3] was employed for the proposed RSEM in our simulations.
Two important simulation results are shown in this section.
We considered a MIMO channel with two inputs and three
outputs, and assumed that the length of channel is three (K �

3), that is H �k�s in (1) were set to be

H�z� �
2

∑
k�0
H�k�z�k �

�
�

1�00�0�15z�1 �0�10z�2 0�65� 0�25z�1 �0�15z�2

0�50�0�10z�1 �0�20z�2 1�00� 0�25z�1 �0�10z�2

0�60�0�10z�1 �0�40z�2 0�10� 0�20z�1 �0�10z�2

�
� �(59)

The length of the deconvolver was chosen to be four
(L � 4) and eight (L � 8). We set the values of the tap co-

efficients to be zero except for w �3�
11 = w

�3�
22 = 1 in case of

L� 4 and w�5�
11 = w

�5�
22 = 1 in case of L� 8. Two source sig-

nals s1�t� and s2�t� were a sub-Gaussian signal and a super-
Gaussian signal, in which the sub-Gaussian signal takes one
of two values, -1 and 1 with same probability 1/2, and the
super-Gaussian signal takes �p5,

p
5 and 0 with probabil-

ities 1/10, 1/10 and 4/5, respectively. The parameter p and
q in (6) were set to be p = 2 and q = 1, that is, �j (j =
1,2) in (19) were the fourth-order cumulants of the source
signals. The values of the fourth-order cumulants of the sub-
Gaussian and super-Gaussian signal were -2 and +2, respec-
tively. Three independent Gaussian noises (with identical
variance �2

n) were added to the three outputs yi�t�’s at var-
ious SNR levels. The SNR is, for convenience, defined as
SNR := 10 log10��

2
si
��2

n�, where �2
si

’s are the variances of
si�t�’s and are equal to 1.
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Figure 1: The performances of the proposed RSEM for the
length of deconvolver L� 4 and L� 8.

Figure 2: The performances for the proposed RSEM and the
conventional SEM.

As a measure of performance, we used the multichannel
intersymbol interference (MISI) [3],[7]. The value of MISI
becomes �∞, if g̃l’s in (8) are obtained, and hence a minus
large value of MISI indicates the proximity to the desired so-
lution.

First we consider an effect of the length of the decon-
volver (L). Fig. 1 shows the results of performances of the
proposed RSEM for the length of deconvolver L � 4 and
L � 8 when the SNR levels were respectively taken to be
0[dB] (�2

n = 1), 2.5[dB], 5[dB], 10[dB], 20[dB] and ∞ [dB]
(�2

n = 0), in which each MISI shown in Fig. 1 was the av-
erage of the performance results obtained by 10 independent
Monte Carlo runs. In each Monte Carlo run, C̃ and D̃i were
estimated by 10,000 data samples.

It can be seen from Fig. 1 that the performance of the
proposed RSEM is better as the number of the length of the
deconvolver increases at SNR greater than 5 dB. This implies
that the performance of the RSEM depends on the length of
the deconvolver and that the mixed type source signals of the
sub-Gaussian and the super-Gaussian are deconvolved better
as the length of the deconvolver increases. This fact is shown
in Theorem 2.

Secondly we compare the proposed RSEM with the con-
ventional method (SEM) [3]. Fig. 2 shows the results of per-
formances for both the proposed RSEM and the conventional
SEM by the same SNR levels and the same number of inde-
pendent Monte Carlo runs as in Fig. 1. In each Monte Carlo
run, C̃ and D̃i were estimated by data samples in the fol-
lowing two cases; (Case 1) 10,000 data and (Case 2) 30,000
data. The length of the deconvolver was chosen to be eight

(L� 8).
It can be seen from Fig. 2 that the proposed RSEM shows

better performance than the conventional SEM in Case 2 at
SNR level is in the vicinity of 20 dB, and as the number of
data samples which are needed to estimate the cumulants
increases, the proposed RSEM shows much better perfor-
mance.

5. CONCLUSIONS

We proposed an RSEM for deconvolving blindly MIMO-FIR
channels in the presence of Gaussian noise. It can treat such
general cases as some of the source signals are sub-Gaussian
and the remainder are super-Gaussian. It was shown from
the simulation results that the proposed RSEM is robust to
Gaussian noise and can successfully solve the multichannel
blind deconvolution problem.
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