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Abstract— The multichannel blind deconvolution of finite-
impulse response (FIR) or infinite-impulse response (IIR) chan-
nels is investigated using the multichannel super-exponential
deflation methods. We propose a new adaptive approach to the
multichannel super-exponential deflation methods using the ma-
trix pseudo-inversion lemma (which is extended from the matrix
inversion lemma in the full-rank case to the rank-degenerate
case) and the higher-order cross correlations of the channel
and the equalizer outputs. In order to see the effectiveness of
the proposed approach, many computer simulations are carried
out for time-invariant MIMO channels along with time-variant
MIMO channels. It is shown through computer simulations that
the proposed approach is effective for even time-variant channels.

I. INTRODUCTION

Multichannel blind deconvolution has recently received
attention in such fields as digital communications, image
processing and neural information processing [1].

In the early 1990s, Shalvi and Weinstein proposed an at-
tractive approach to single-channel blind deconvolution called
the super-exponential methods (SEMs) [2]. One of the
attractive properties of the SEM is that it converges iteratively
to desired solution regardless of initialization at a super-
exponential rate. Extensions of their idea to multichannel
deconvolution were presented in [3], [4], [5], [6], [7], [9].
In particular, Inouye and Tanebe [3] proposed the multichan-
nel super-exponential deflation method (MSEDM) using the
second-order correlations. Moreover, Kawamoto et al. [7] and
Kohno et al. [9] proposed MSEDMs using the higher-order
correlations instead of the second-order correlations in order
to reduce the computational complexity and accelerate the per-
formance of deconvolution. The MSEDMs are to deconvolve
sequentially the source signals one by one. The most important
property of the MSEDMs is that it converges globally to
desired solution except for pathological cases. However, it is
not considered that the underlying channel exhibits change in
time for almost all the conventional MSEDMs, because they
do not have an adaptive algorithm which is capable of tracking
the varying characteristics of the channel.

In the present paper, we propose an adaptive multichannel
super-exponential deflation algorithm (AMSEDA) using the
higher-order correlations for MIMO wide band channels (con-
volutive mixtures). We already proposed two type of adaptive
multichannel super-exponential algorithms (AMSEAs), the

one in covariance (correlation or Kalman-filter) form and the
other in QR-factorization form, for the degenerate rank case of
the correlations matrices [8]. We propose an AMSEDA using
the matrix pseudo-inversion lemma (the covariance form) in
this paper, and we show the effectiveness of the proposed
algorithm by computer simulations in comparison with the
AMSEDA using the QR-factorization [10].

The present paper uses the following notation: Let Z denote
the set of all integers. Let Cm×n denote the set of all m× n
matrices with complex components. The superscripts T , ∗,
H and † denote, respectively, the transpose, the complex
conjugate, the complex conjugate transpose (Hermitian) and
the (Moore-Penrose) pseudoinverse operations of a matrix. Let
i = 1, n stand for i = 1, 2, · · · , n.

II. ASSUMPTIONS AND PRELIMINARIES

We consider an MIMO channel with n inputs and m outputs
as described by

y(t) =
∞∑

k=−∞
H(k)s(t − k), t ∈ Z, (1)

where
s(t) n-column vector of input (or source) signals,
y(t) m-column vector of channel outputs,
H(k) m × n matrix of impulse responses.

The transfer function of the channel is defined by

H(z) =
∞∑

k=−∞
H(k)zk, z ∈ C. (2)

For the time being, it is assumed for theoretical analysis that
the noise is absent in (1).

To recover the source signals, we process the output signals
by an n × m equalizer (or deconvolver) W (z) described by

z(t) =
∞∑

k=−∞
W (k)y(t − k), t ∈ Z. (3)

The objective of multichannel blind deconvolution is to
construct an equalizer that recovers the original source signals
only from the measurements of the corresponding outputs.

We put the following assumptions on the channel and the
source signals.
A1) The transfer function H(z) is stable and has full column
rank on the unit circle |z| = 1 [ this implies that the unknown
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system has less inputs than outputs, i.e., n<m, and there exists
a left stable inverse of the unknown system ].
A2) The input sequence {s(t)} is a complex, zero-mean,
non-Gaussian random vector process with element processes
{si(t)}, i = 1, n being mutually independent. Moreover, each
element process {si(t)} is an i.i.d. process with a nonzero
variance σ2

i and a nonzero fourth-order cumulant γi. The vari-
ances σ2

i ’s and the fourth-order cumulants γi’s are unknown.
A3) The equalizer W (z) is an FIR channel of sufficient length
L so that the truncation effect can be ignored.

Remark 1: As to A1), if the channel H(z) is FIR, then a
condition of the existence of an FIR equalizer is rank H(z) =
n for all nonzero z ∈ C [11]. Moreover, if H(z) is irreducible,
then there exists an equalizer W (z) of length L<n(K − 1),
where K is the length of the channel [11]. Besides, it is shown
in [4] that there exists generically (or except for pathological
cases) an equalizer W (z) of length L = �n(K−1)

m−n �, where �x�
stands for the smallest integer that is greater than equal to x.

Let us consider an FIR equalizer with the transfer function
W (z) given by

W (z) =
L2∑

k=L1

W (k)zk, (4)

where the length L:=L2 − L1 + 1 is taken to be sufficiently
large. Let w̃i be the Lm-column vector consisting of the tap
coefficients (corresponding to the ith output) of the equalizer
defined by

w̃i :=
[
wT

i,1,w
T
i,2, · · · ,wT

i,m

]T ∈ CmL, (5)

wi,j =
[
wi,j

(L1), wi,j
(L1+1), · · · , wi,j

(L2)
]T

∈ CL, (6)

where wi,j
(k) is the (i, j)th element of matrix W (k).

Inouye and Tanebe [3] proposed the multichannel super-
exponential algorithm (MSEA) for finding the tap coefficient
vectors w̃i’s of the equalizer W (z), of which each iteration
consists of the following two steps:

w̃
[1]
i = R̃

†
Ld̃i for i = 1, n, (7)

w̃
[2]
i =

w̃
[1]
i√

w̃
[1]H
i R̃Lw̃

[1]
i

for i = 1, n, (8)

where (·)[1] and (·)[2] stand respectively for the result of the
first step and the result of the second step. Let ỹ(t) be the
Lm-column vector consisting of the L consecutive inputs of
the equalizer defined by

ỹ(t) :=
[
ȳ1(t)

T , ȳ2(t)
T , · · · , ȳm(t)T

]T ∈ CmL, (9)

ȳi(t) := [yi(t − L1), yi(t − L1 − 1), · · · , yi(t − L2)]
T

∈ CL, (10)
where yi(t) is the ith element of the output vector y(t) of the
channel in (1). Then the correlation matrix R̃L is represented
as

R̃L = E
[
ỹ∗(t)ỹT (t)

]
∈ CmL×mL, (11)

and the fourth-order cumulant vector d̃i is represented as
d̃i = cum(zi(t), zi(t), zi

∗(t), ỹ∗(t))

= E
[
|zi(t)|2zi(t)ỹ∗(t)

]
−2E

[
|zi(t)|2

]
E [zi(t)ỹ∗(t)]

−E
[
zi

2(t)
]
E [zi

∗(t)ỹ∗(t)] ∈ CmL, (12)
where E [x] denotes the expectation of a random variable x.
We note that the last term can be ignored in case of E

[
si(t)2

]
= 0, in which case E

[
zi(t)2

]
= 0 for all i = 1, n.

III. AN ADAPTIVE SUPER-EXPONENTIAL ALGORITHM

USING THE MATRIX PSEUDO-INVERSION LEMMA

Kohno et al. proposed two types of AMSEAs, the one in
covariance (correlation or Kalman-filter) form and the other
in QR-factorization form, for the degenerate rank case of the
correlations matrices [8]. Except for the case when the number
of outputs equals the number of inputs, i.e., m = n, the
correlation matrix R̃L is not of full rank. Situations with the
number of independent sources (or inputs) being strictly less
than the number of sensors (or outputs) are often encountered
in various applications such as digital communication, image
processing and neural information processing. Moreover, if the
underlying channel exhibits slow changes in time, processing
all the available data jointly is not desirable, even if we can
accommodate the computational and storage loads of the batch
algorithm in (7) and (8), because different data segments
correspond to different channel responses. In such a case,
we want to have an adaptive algorithm which is capable of
tracking the varying characteristics of the channel.

Consider the batch algorithm in (7) and (8). The equation
(8) constraints a weighted norm of vector w̃i to equal one,
and thus we assume this constraint is always satisfied using
a normalization or an automatic gain control (AGC) of w̃i at
each time t. To develop an adaptive version of (7), we must
specify the dependency of each time t and rewrite (7) as

w̃i(t) = R̃
†
L(t)d̃i(t) , i = 1, n. (13)

Here the subscript L of R̃L(t) is omitted for simplicity
hereafter.

In order to develop an adaptive version of the MSEA,
we should obtain recursion formulas for time-updating of
matrix R̃(t), vector d̃i(t) and pseudoinverse R̃†(t) in (13),
respectively.

R̃(t) = αR̃(t − 1) + (1 − α)ỹ∗(t)ỹT (t), (14)
d̃i(t) = αd̃i(t − 1) + (1 − α)ỹ∗(t)z̃i(t), (15)

where
z̃i(t) := (|zi(t)|2 − 2 < |zi(t)|2 >)zi(t)− < z2

i (t) > z∗i (t).
(16)

Here < |zi(t)|2 > and < z2
i (t) > denote respectively the esti-

mates of E
[|zi(t)|2

]
and E

[
zi(t)2

]
at time t, α is a positive

constant close to, but less than one, which accounts for some
exponential weighting factor or forgetting factor [13].

By applying the pseudo-inversion lemma [8] to (14) for ob-
taining a recursion formula for time-updating of pseudoinverse
P (t)=R̃†(t), we obtain the following lemma.

Lemma 1: Let b(t), b1(t) and b2(t) are defined as
b(t) =

√
(1 − α)ỹ∗(t), (17)

b1(t) = P (t − 1)R̃(t − 1)b(t), (18)
b2(t) =

{
I − P (t − 1)R̃(t − 1)

}
b(t). (19)

Then formula of the recursion for the pseudoinverse P (t) from
P (t − 1) by using the pseudo-inversion lemma is explicitly
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expressed, depending on the values of vectors b1(t) and b2(t)
and matrix R̃(t − 1), as follows:

1) If b2(t) = 0, then

P (t) =
1
α

[
P (t − 1) − P (t − 1)b1(t)bH

1 (t)P (t − 1)
α + bH

1 (t)P (t − 1)b1(t)

]
.

(20)
2) If b2(t) �= 0 and b1(t) = 0, then

P (t) =
1
α

P (t − 1) +
b2(t)bH

2 (t){
bH
2 (t)b2(t)

}2 . (21)

3) Let l(t) be a non-negative number defined by
l(t) := |1 + bH

1 (t)P b(t)b2(t)|2
−bH

1 (t)P b(t)b1(t)bH
2 (t)P b(t)b2(t), (22)

where P b(t) is defined by

P b(t) :=
1
α

[
P (t − 1) − P (t − 1)b1(t)bH

1 (t)P (t − 1)
α + bH

1 (t)P (t − 1)b1(t)

]

+
b2(t)bH

2 (t){
bH
2 (t)b2(t)

}2 . (23)

Then in the case when b2(t) �= 0 and b1(t) �= 0,
P (t) = P b(t)−P b(t) [b1(t), b2(t)] P d(t) [b1(t), b2(t)]

H
P b(t),

(24)
where

P d(t) :=
1

l(t)

[ −bH
2 (t)P b(t)b2(t) 1 + bH

1 (t)P b(t)b2(t)
1 + bH

2 (t)P b(t)b1(t) −bH
1 (t)P b(t)b1(t)

]
.

(25)
These equations are initialized by their values appropriately

selected or calculated by the batch algorithm in (7) and (8) at
initial time t0 and used for t = t0 + 1, t0 + 2, · · ·.

Remark 2: In Lemma 1, in order to keep the stability of
P (t), the positive constant value α has to be chosen for
the appropriate value which is very close to 1, or which
is asymptotically approached to 1 with time t, for example
α = 1 − 1/(1000 + t).

Based on Lemma 1 along with (15), we obtain following
theorem with gives a recursion formula for time-updating of
the tap vector w̃i(t) for i = 1, n.

Theorem 1: The recursion for w̃i(t) is

w̃i(t) = P (t)R̃(t)w̃i(t−1)+k(t)
[
z̃i(t) − ỹT (t)w̃i(t − 1)

]
,

(26)
where

k(t) := (1 − α)P (t)ỹ∗(t), (27)
z̃i(t) := (|zi(t)|2 − 2 < |zi(t)|2 >)zi(t)− < z2

i (t) > z∗i (t),
(28)

< |zi(t)|2 >:= β < |zi(t − 1)|2 > +(1 − β)|zi(t)|2, (29)
< z2

i (t) >:= β < z2
i (t − 1) > +(1 − β)z2

i (t). (30)
Here β is a positive constant less than α, and P (t)=R̃†(t) is
the pseudoinverse of R̃(t).

IV. AN ADAPTIVE SUPER-EXPONENTIAL DEFLATION

ALGORITHM USING THE MATRIX PSEUDO-INVERSION

LEMMA

The MSEDM proposed by Inouye and Tanebe [3] uses
the second-order correlations to estimate the contributions of

an extracted source signal to the channel outputs. Kohno et
al. [9] proposed an MSEDM using the higher-order correla-
tions instead of the second-order correlations to reduce the
computational complexity in terms of multiplications and to
accelerate the performance of equalization. For the details
of the MSEDM using the higher-order correlations, see the
equations from (13) through (30) in [9]. In the present paper,
we proposed a new AMSEDA which is an adaptive version of
the MSEDM using the higher-order correlations and the matrix
pseudo-inversion lemma described in the previous chapter.

In the new AMSEDA, the following procedures are carried
out in each time when channel outputs are observed.

Before the following procedures are carried out, it is nec-
essary that R̃, d̃i, w̃i and P are initialized.

At first, set t = t0, and set l = 1 where l denotes the number
of channels (or the sources) equalized.

Then, R̃(t) is calculated by (14), d̃1(t) is calculated by
using (15), (28), (29) and (30), P (t) is calculated by using
from (17) to (25), and w̃1(t) is calculated by the two steps
(26) and (8). By these procedures, the first equalized output
z1(t) is obtained.

Next, the MSEDM using the higher-order correlations is
carried out. We calculate the contribution signals by using the
equalized output z1(t), and remove the contribution signals
from the channel outputs in order to define the outputs of a
multichannel with n − 1 inputs and m outputs. The number
of inputs becomes deflated by one. The procedures mentioned
above are continued until l = n, where we obtain the last
equalized output zn(t) for t = t0. If t < tf (where tf is a final
time), then set t = t0 + 1 and iterate the same procedures as
the previous time t. If t = tf , then stop here. The n equalized
outputs z1(t),· · ·, zn(t) are obtained for t = t0, t0 + 1,· · ·, tf .

Therefore, the proposed algorithm is summarized as shown
in Table 1.

Table 1. The proposed algorithm.
Step Contents

1 Set t = t0 (where t0 is an initial time).
2 Set l = 1 (where l denotes the number of the

channels equalized).
3 Calculate R̃(t) using (14).
4 Calculate d̃l(t) using (15), (28), (29) and (30).
5 Calculate P (t) using from (17) to (25).
6 Calculate w̃l(t) using (26) and (8).
7 Carry out the deflationary process using the

MSEDM with the higher-order correlations [9].
8 If the subscript l is less than n, then set

l = l + 1, and the procedures (from Step 3
through Step 7) are continued until l = n.

9 If t < tf (where tf is a final time), then set
t = t + 1 and iterate the procedures from
Step 2 through Step 8. If t = tf , then stop here.

V. SIMULATIONS

To demonstrate the effectiveness of proposed method, some
computer simulations were conducted. We considered an
MIMO channel with two inputs and three outputs, and as-
sumed that the length of channel is three (K = 3), that is
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H(k)s in (1) were set to be

H(z) =
2∑

k=0

H(k)zk =
 1.00 + 0.15z + 0.10z2 0.65 + 0.25z + 0.15z2

0.50 − 0.10z + 0.20z2 1.00 + 0.25z + 0.10z2

0.60 + 0.10z + 0.40z2 0.10 + 0.20z + 0.10z2


 . (31)

The length of the equalizer was chosen to be seven (L = 7).
We set the values of the tap coefficients to be zero expect
for w

(4)
12 = w

(4)
21 = 1. Two source signals were 4-PSK and 8-

PSK signals, respectively. For recovering first source signal,
the initial values of R̃, d̃i and P were estimated using 5,000
data samples. For recovering second source signal, the initial
value of R̃ and P were set the identity matrix I . The values
of α and β were chosen as α = 0.999 and β = 0.05,
respectively. Besides, we used the fourth-order correlation
method for subtracting the contributions of an extracted source
signal to the channel outputs. As a measure of performance, we
use the multichannel intersymbol interference (MISI) [3],[9].

Fig. 1 and Fig. 2 show performance results of our proposed
algorithm for the time-invariant and the time-invariant channel,
respectively, compared with the existing AMSEDA using the
QR-factorization [10] with same conditions obtained by using
100,000 data samples. In Fig. 2, the last matrix H(2) of the
impulse response of the channel was varied by adding 0.3 to
all its elements at discrete time t =30,000 for the proposed
algorithm and at t =2,500 for the existing AMSEDA.

It can be seen from Fig. 1 that the proposed algorithm
deconvolved all source signals and it is effective for the time-
invariant channel. Also it can be seen from Fig. 1 that in
the proposed algorithm it takes much time (about t =20,000)
until all source signals are deconvolved, however the accuracy
is very high (about -22dB) and the stability with the time is
good. In the meantime, in the existing AMSEDA all source
signals are deconvolved quickly (about t =2,500), however
the accuracy is not so high (about -3dB) and the stability with
time is bad, because the value of MISI gradually increases
after all source signals are deconvolved.

It can be seen from Fig. 2 that the proposed algorithm
is effective for even the time-variant channel, however the
existing AMSEDA is not effective for the time-variant channel.

We think that one of reasons why the proposed algorithm is
superior to the existing AMSEDA for the time-variant channel
is that the pseudo-inversion lemma gives an explicit recursion
formula for time-updating of calculating the pseudoinverse
R̃†(t). This fact holds also true in the full-rank case of the
correlation matrices.

VI. CONCLUSIONS

We have considered the problem of adaptive multichannel
blind deconvolution based on the super-exponential algorithms
using deflation methods proposed by Inouye and Tanebe [3].
In this paper, we proposed a new approach to the adaptive
multichannel deflationary blind deconvolution using the matrix
pseudo-inversion lemma and the higher-order correlations. In
order to see the effectiveness of the proposed approach, we

Fig. 1. Performance of the proposed algorithm for the non-adaptive model.

Fig. 2. Performance of the proposed algorithm for the adaptive model.

have considered computer simulations for two types of MIMO
channels, that is, the first one is time-invariant and the second
one is time-variant. It has been shown through computer
simulations that the proposed approach is effective for time-
invariant channels and even time-variant channels.
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