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Abstract. We propose an eigenvector algorithm (EVA) with reference
signals for blind deconvolution (BD) of multiple-input multiple-output
infinite impulse response (MIMO-IIR) channels. Differently from the con-
ventional EVAs, each output of a deconvolver is used as a reference signal,
and moreover the BD can be achieved without using whitening tech-
niques. The validity of the proposed EVA is shown comparing with our
conventional EVA.

1 Introduction

This paper deals with a blind deconvolution (BD) problem for a multiple-input
and multiple-output (MIMO) infinite impulse response (IIR) channels. To solve
this problem, we use eigenvector algorithms (EVAs) [6,7,12]. The first proposal of
the EVA was done by Jelonnek et al. [6]. They have proposed the EVA for solving
blind equalization (BE) problems of single-input single-output (SISO) channels
or single-input multiple-output (SIMO) channels. In [12], several procedures for
the blind source separation (BSS) of instantaneous mixtures, using the gener-
alized eigenvalue decomposition (GEVD), have been introduced. Recently, the
authors have proposed an EVA which can solve BSS problems in the case of
MIMO static systems (instantaneous mixtures) [8]. Moreover, based on the idea
in [8], an EVA was derived for MIMO-IIR channels (convolutive mixtures) [9].

In the EVAs in [8,9], an idea of using reference signals was adopted. Researches
applying this idea to solving blind signal processing (BSP) problems, such as
the BD, the BE, the BSS, and so on, have been made by Jelonnek et al. (e.g.,
[6]), Adib et al. (e.g., [2]), Rhioui et al. [13], and Castella, et al. [3]. In [8,9],
differently from the conventional methods, only one reference signal was utilized
for recovering all the source signals simultaneously.

However, the EVA in [9] has difference performances for a different choice of
the reference signal (see section 4), and in order to recover all source signals, it
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Fig. 1. The composite system of an unknown system and a deconvolver, and a reference
system

must be taken into account how to select appropriate eigenvectors from the set
of eigenvectors calculated by the EVA. In this paper, in order to circumvent such
a tedious (or nasty) task, the output of a deconvolver which is used to recover
source signals is used as a reference signal. Accordingly, deflation techniques
are needed to recover all source signals. The method proposed in [3] is almost
same as the proposed EVA. However, the proposed EVA can achieve the BD
without using whitening techniques. Moreover, the proposed EVA provides good
performances compared with our conventional EVA [9] (see section 4).

The present paper uses the following notation: Let Z denote the set of all
integers. Let C denote the set of all complex numbers. Let Cn denote the set
of all n-column vectors with complex components. Let Cm×n denote the set
of all m × n matrices with complex components. The superscripts T , ∗, and
H denote, respectively, the transpose, the complex conjugate, and the complex
conjugate transpose (Hermitian) of a matrix. The symbols block-diag{· · ·} and
diag{· · ·} denote respectively a block diagonal and a diagonal matrices with the
block diagonal and the diagonal elements {· · ·}. The symbol cum{x1,x2,x3,x4}
denotes a fourth-order cumulant of xi’s. Let i = 1, n stand for i = 1, 2, · · · , n.

2 Problem Formulation and Assumptions

We consider a MIMO channel with n inputs and m outputs as described by

y(t) =
∑∞

k=−∞H(k)s(t − k) + n(t), t ∈ Z, (1)

where s(t) is an n-column vector of input (or source) signals, y(t) is an m-column
vector of channel outputs, n(t) is an m-column vector of Gaussian noises, and
{H(k)} is an m × n impulse response matrix sequence. The transfer function of
the channel is defined by H(z) =

∑∞
k=−∞ H(k)zk, z ∈ C.

To recover the source signals, we process the output signals by an n × m
deconvolver (or equalizer) W (z) described by

z(t) =
∑∞

k=−∞W (k)y(t − k)

=
∑∞

k=−∞G(k)s(t − k) +
∑∞

k=−∞W (k)n(t − k), (2)

where {G(k)} is the impulse response matrix sequence of G(z) := W (z)H(z),
which is defined by G(z) =

∑∞
k=−∞ G(k)zk, z ∈ C. The cascade connection of

the unknown system and the deconvolver is illustrated in Fig. 1.
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Here, we put the following assumptions on the channel, the source signals, the
deconvolver, and the noises.

A1) The transfer function H(z) is stable and has full column rank on the unit
circle |z| = 1, where the assumption A1) implies that the unknown system has
less inputs than outputs, i.e., n < m, and there exists a left stable inverse of the
unknown system.
A2) The input sequence {s(t)} is a complex, zero-mean and non-Gaussian ran-
dom vector process with element processes {si(t)}, i = 1, n being mutually inde-
pendent. Each element process {si(t)} is an i.i.d. process with a variance σ2

si
�= 0

and a nonzero fourth-order cumulant γi �= 0 defined as

γi = cum{si(t), si(t), s∗i (t), s
∗
i (t)} �= 0. (3)

A3) The deconvolver W (z) is an FIR channel of sufficient length L so that the
truncation effect can be ignored.
A4) The noise sequence {n(t)} is a zero-mean, Gaussian vector stationary pro-
cess whose component processes {nj(t)}, j = 1, m have nonzero variances σ2

nj
,

j = 1, m.
A5) The two vector sequences {n(t)} and {s(t)} are mutually statistically in-
dependent.

Under A3), the impulse response {G(k)} of the cascade system is given by

G(k) :=
∑L2

τ=L1
W (τ)H(k−τ), k ∈ Z, (4)

where the length L := L2 − L1 + 1 is taken to be sufficiently large. In a vector
form, (4) can be written as

g̃i = H̃w̃i, i = 1, n, (5)

where g̃i is the column vector consisting of the ith output impulse response of
the cascade system defined by g̃i := [gT

i1, g
T
i2, · · · , gT

in]T ,

gij := [· · · , gij(−1), gij(0), gij(1), · · ·]T , j = 1, n (6)

where gij(k) is the (i, j)th element of matrix G(k), and w̃i is the mL-column
vector consisting of the tap coefficients (corresponding to the ith output) of the
deconvolver defined by w̃i :=

[
wT

i1, w
T
i2, · · · , wT

im

]T ∈ CmL,

wij := [wij(L1), wij(L1 + 1), · · · , wij(L2)]
T ∈ CL, (7)

j = 1, m, where wij(k) is the (i, j)th element of matrix W (k), and H̃ is the n×m
block matrix whose (i, j)th block element H ij is the matrix (of L columns and
possibly infinite number of rows) with the (l, r)th element [H ij ]lr defined by
[Hij ]lr := hji(l − r), l = 0, ±1, ±2, · · ·, r=L1, L2, where hij(k) is the (i, j)th
element of the matrix H(k).

In the multichannel blind deconvolution problem, we want to adjust w̃i’s (i
= 1, n) so that

[g̃1, · · · , g̃n] = H̃ [w̃1, · · · , w̃n] = [δ̃1, · · · , δ̃n]P , (8)



An Eigenvector Algorithm with Reference Signals 221

where P is an n × n permutation matrix, and δ̃i is the n-block column vector
defined by

δ̃i := [δT
i1, δ

T
i2, . . . , δ

T
in]T , i = 1, n (9)

δij :=
{

δ̂i, if i = j,
(· · · , 0, 0, 0, · · ·)T , otherwise.

(10)

Here, δ̂i is the column vector (of infinite elements) whose rth element δ̂i(r) is
given by δ̂i(r) = diδ(r − ki), where δ(t) is the Kronecker delta function, di is
a complex number standing for a scale change and a phase shift, and ki is an
integer standing for a time shift.

3 Eigenvector Algorithms (EVAs)

3.1 Analysis of Eigenvector Algorithms with Reference Signals for
MIMO-IIR Channels

In order to solve the BD problem, the following cross-cumulant between zi(t)
and a reference signal x(t) (see Fig. 1) is defined;

Dzix = cum{zi(t), z∗i (t), x(t), x∗(t)}, (11)

where zi(t) is the ith element of z(t) in (2) and the reference signal x(t) is
given by fT (z)y(t), using an appropriate filter f(z). The filter f (z) is called a
reference system. Let a(z) := HT (z)f(z) = [a1(z),a2(z),· · ·,an(z)]T , then x(t)
= fT (z)H(z)s(t) = aT (z)s(t). The element ai(z) of the filter a(z) is defined as
ai(z) =

∑∞
k=−∞ ai(k)zk and the reference system f(z) is an m-column vector

whose elements are fj(z) =
∑L2

k=L1
fj(k)zk, j = 1, m.

Jelonnek et al. [6] have shown in the single-input case that by the Lagrangian
method, the maximization of |Dzix| under σ2

zi
= σ2

sρi
leads to a closed-form so-

lution expressed as a generalized eigenvector problem, where σ2
zi

and σ2
sρi

denote
the variances of the output zi(t) and a source signal sρi(t), respectively, and ρi

is one of integers {1, 2, · · · , n} such that the set {ρ1, ρ2,· · ·,ρn} is a permutation
of the set {1, 2,· · ·,n}. In our case, Dzix and σ2

zi
can be expressed in terms of

the vector w̃i as, respectively,

Dzix = w̃H
i B̃w̃i, σ2

zi
= w̃H

i R̃w̃i, (12)

where B̃ is the m×m block matrix whose (i, j)th block element Bij is the matrix
with the (l, r)th element [Bij ]lr calculated by cum{y∗

i (t−L1 − l+1), yj(t−L1 −
r + 1), x∗(t), x(t)} (l, r = 1, L) and R̃ = E[ỹ∗(t)ỹT (t)] is the covariance matrix
of m-block column vector ỹ(t) defined by

ỹ(t) :=
[
yT

1 (t), yT
2 (t), · · · , yT

m(t)
]T ∈ CmL, (13)

yj(t) := [yj(t-L1), yj(t-L1-1), · · · , yj(t-L2)]
T ∈ CL, (14)
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j = 1, m. Therefore, by the similar way to as in [6], the maximization of |Dzix|
under σ2

zi
= σ2

sρi
leads to the following generalized eigenvector problem;

B̃w̃i = λiR̃w̃i. (15)

Moreover, Jelonnek et al. have shown that the eigenvector corresponding to
the maximum magnitude eigenvalue of R̃†B̃ becomes the solution of the blind
equalization problem in [6], which is referred to as an eigenvector algorithm
(EVA). Note that since Jelonnek et al. have dealt with SISO-IIR channels or
SIMO-IIR channels, the constructions of B̃, w̃i, and R̃ in (15) are different
from those proposed in [6,7]. In this paper, we want to show how the eigenvector
algorithm (15) works for the BD of the MIMO-IIR channel (1).

To this end, we use the following equalities;

R̃ = H̃
H

Σ̃H̃, B̃ = H̃
H

Λ̃H̃, (16)

where Σ̃ is the block diagonal matrix defined by

Σ̃ := block-diag{Σ1, Σ2, · · · , Σn}, (17)
Σi := diag{· · · , σ2

si
, σ2

si
, σ2

si
, · · ·}, i = 1, n, (18)

and Λ̃ is the block diagonal matrix defined by

Λ̃ := block-diag{Λ1, Λ2, · · · , Λn}, (19)
Λi := diag{· · · , |ai(−1)|2γr, |ai(0)|2γi, |ai(1)|2γi, · · ·}, (20)

i = 1, n. Since both Σ̃ and Λ̃ become diagonal, (16) shows that the two matrices
R̃ and B̃ are simultaneously diagonalizable.

Here, let the eigenvalues of the diagonal matrix Σ̃−1Λ̃ is denoted by

λi(k) := |ai(k)|2γi/σ2
si

, i = 1, n, k ∈ Z. (21)

We put the following assumption on the eigenvalues λi(k)′s.
A6) All the eigenvalues λi(k)′s are distinct for i = 1, n and k ∈ Z.

Theorem 1. Suppose the noise term n(t) is absent and the length L of the de-
convolver is infinite (that is, L1 = −∞ and L2 = ∞). Then, under the assump-
tions A1) through A6), the n eigenvector w̃i’s corresponding to the n nonzero
eigenvalues λi(k)′s of matrix R̃†B̃ for i = 1, n and an arbitrary k ∈ Z become
the vectors w̃i’s satisfying (8).

Outline of the proof: Based on (15), we consider the following eigenvector
problem;

R̃
†
B̃w̃i = λiw̃i. (22)

Then, from (16), (22) becomes

(H̃
H

Σ̃H̃)†H̃
H

Λ̃H̃w̃i = λiw̃i. (23)
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Under L1 = −∞ and L2 = ∞, we have the following equations;

(H̃
H

Σ̃H̃)† = H̃
†
Σ̃

†
H̃

H†
, H̃

H†
H̃

H
= I, (24)

which are shown in [11] along with their proofs. Then it follows from (23) and
(24);

H̃
†
Σ̃

−1
Λ̃H̃w̃i = λiw̃i. (25)

Multiplying (25) by H̃ from the left side and using (24), (25) becomes

Σ̃
−1

Λ̃H̃w̃i = λiH̃w̃i. (26)

By (22), Σ̃−1Λ̃ is a diagonal matrix with diagonal elements λi(k), i = 1, n
and k ∈ Z, and thus (22) and (26) show that its diagonal elements λi(k)′s are
eigenvalues of matrix R̃†B̃. Here we use the following fact;

lim
L→∞

(rank R̃)/L = n, (27)

which is shown in [10] and its proof is found in [4]. Using this fact, the other
remaining eigenvalues of R̃†B̃ are all zero. From the assumption A6), the n
nonzero eigenvalues λi(k) �= 0, i = 1, n, obtained by (26), that is, the n nonzero
eigenvectors w̃i, i = 1, n, corresponding to n nonzero eigenvalues λi(k) �= 0,
i = 1, n, obtained by (22) become n solutions of the vectors w̃i satisfying (8).

3.2 How to Choose a Reference Signal

In [9], a reference system f (z) is appropriately chosen, and then all source sig-
nals can be recovered simultaneously from the observed signals. However, the
performances obtained by the EVA in [9] change with the way of choosing a ref-
erence system (see section 4) and moreover, the EVA has such a complicated task
that the way of selecting appropriate eigenvectors from the set of eigenvectors
calculated from the EVA must be taken into account.

In this paper, by adopting xi(t) = w̃T
i ỹi(t) as a reference signal, we want to

circumvent such a tedious (or nasty) task. To this end, (11) can be reformulated
as

Dzixi = cum{zi(t), z∗i (t), xi(t), x∗
i (t)}, i = 1, n, (28)

The vector w̃i in xi(t) is given by an eigenvector obtained from the EVA at the
previous time, that is, xi(t) = w̃T

i (t − 1)ỹi(t), where the value of w̃T
i (t − 1) is

assumed to be fixed. By using xi(t), the matrix B̃ is calculated, which is denoted
by B̃i(t), and then the eigenvector w̃T

i (t) at time t can be obtained from the
EVA using B̃i(t). By repeating this operation, the BD can be achieved. Then
it can be seen that as the EVA works successfully, xi(t) gradually becomes a
source signals sρi(t − ki). Namely, the diagonal elements of Λ̃ in (19) gradually
become zeros except for one element corresponding to sρi(t−ki). This means that
when the eigenvectors of R̃†B̃i(t) are calculated for achieving the BD, it is only
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enough that we select the eigenvector corresponding to the absolute maximum
eigenvalue of R̃†B̃i(t). This is the reason why we can circumvent the tedious
task by using the reference signal. After all, the EVA is implemented as follows:

Set initial values: w̃i(0), R̃(0), B̃i(0)
for tl = 1 : tlall

for t = td(tl − 1)+1:tdtl
xi(t) = w̃T

i (tl − 1)ỹi(t)
Calculate R̃(t) and B̃i(t) by a moving average.

end
Calculate the eigenvector w̃i(tl) associated with the absolute maximum
eigenvalue |λi| from (22).

end

where tlall
denotes the total number of iterations and td denotes the number of

data samples for estimating the matrices R̃(t) and B̃i(t). Note that R̃ is not
needed to estimate iteratively, but for the sake of our convenience, this way is
adopted.

Here it is worth noting that when the above algorithm is implemented, it
may happen that each output of a deconvolver provides the same source signal.
Therefore, in order to avoid such a situation, we apply a deflation approach, that
is, the Gram-Schmidt decorrelation [1] to the eigenvectors w̃i(tl) for i = 1, n.

4 Simulation Results

To demonstrate the validity of the proposed method, many computer simulations
were conducted. Some results are shown in this section. The unknown system
H(z) was set to be the same channel with two inputs and three outputs as in [9].
Also, other setup conditions, that is, the source signals si(t)’s, the noises ni(t)’s,

SNR (dB)

5 10 15 20 25 30 35 40
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-10
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Fig. 2. The performances of the proposed EVA and our conventional EVA with varying
SNR levels, in the cases of 5,000 data samples
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and their SNR levels were the same as in [9]. As a measure of performances, we
used the multichannel intersymbol interference (MISI) [5], which was the average
of 30 Monte Carlo runs. In each Monte Carlo run, the number of iterations tlall

was set to be 10, and the number of data samples td was set to be 5,000. For
comparison, our conventional EVA in [9] was used, where the conventional EVA
does not need deflation approaches.

Fig. 2 shows the results of performances of the EVAs when the SNR levels were
respectively taken to be 5 through 40 dB for every 5 dB, where there are three
kinds of reference signals, (a) x(t) =

∑3
i=1 fi(5)yi(t − 5), where each parameter

fi(5) was randomly chosen from a Gaussian distribution with zero mean and
unit variance, (b) x(t) = f2(2)y2(t − 2), where f2(2) also was randomly chosen
from the Gaussian distribution, (c) xi(t) = w̃T

i (t − 1)ỹi(t), i = 1, 3. The last
reference signal (c) corresponds to the proposed EVA, while the other two (a)
and (b) correspond to our conventional EVA.

From Fig. 2, it can be seen that the proposed EVA provides better perfor-
mances than our conventional EVA [9].

5 Conclusions

We have proposed an EVA for solving the BD problem. Using the output of a
deconvolver as a reference signal, the tedious task of our conventional EVA can
be circumvented. The simulation results have demonstrated the effectiveness of
the proposed EVA. However, from the simulation results, one can see that all
our EVAs have such a drawback that it is sensitive to Gaussian noise. Therefore,
as a further work, we will propose an EVA having such a property that the BD
can be achieved as little insensitive to Gaussian noise as possible.
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