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Abstract. This paper deals with a blind deconvolution (DB) problem for
multiple-inputmultiple-output infinite impulse response (MIMO-IIR) sys-
tems. To solve this problem, we propose an eigenvector algorithm (EVA).
In the proposed EVA, two kinds of EVAs are merged so as to give a good
performance: One is an EVA and the other is a Robust EVA (REVA) which
works with as little sensitive to Gaussian noise as possible. Owing to this
combination, two drawbacks of the conventional EVAs can be overcome.
Simulation results show the validity of the proposed EVA.

Keywords: Independent component analysis, Blind deconvolution,
Eigenvector algorithms, MIMO-IIR, Reference systems.

1 Introduction

This paper deals with a blind deconvolution (BD) problem for a multiple-input
and multiple-output (MIMO) infinite impulse response (IIR) systems. To solve
this problem, we use eigenvector algorithms (EVAs) [5,6,13]. The first proposal of
the EVA was done by Jelonnek et al. [5]. They have proposed the EVA for solving
blind equalization (BE) problems of single-input single-output (SISO) systems or
single-input multiple-output (SIMO) systems. In [13], several procedures for the
blind source separation (BSS) of instantaneous mixtures, using the generalized
eigenvalue decomposition (GEVD), have been introduced. Recently, the authors
have proposed the EVAs which can solve blind source separation (BSS) problems
in the case of MIMO static systems (instantaneous mixtures) [7,8]. Moreover,
based on the idea in [7], an EVA was derived for MIMO-IIR systems (convolutive
mixtures) [9].

In the EVAs in [7,8,9], an idea of using reference signals was adopted. Re-
searches applying this idea to solving blind signal processing (BSP) problems,
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such as the BD, the BE, the BSS, and so on, have been made by Jelonnek et
al. (e.g., [5]), Adib et al. (e.g., [1]), Rhioui et al. [14], and Castella, et al. [2]. Jelon-
nek et al. have shown in the single-input case that by the Lagrangian method,
the maximization of a contrast function leads to a closed-form solution expressed
as a generalized eigenvector problem, which is referred to as an eigenvector algo-
rithm (EVA). Adib et al. have shown that the BSS for instantaneous mixtures
can be achieved by maximizing a contrast function, but they have not proposed
any algorithm for achieving this idea. Rhioui et al. [14] and Castella et al. [2]
have proposed quadratic MIMO contrast functions for the BSS with convolu-
tive mixtures, and have proposed an algorithm for extracting one source signal
using a ”fixed point”-like method. However, they have not presented a theoret-
ical proof for the convergence of their proposed algorithm. In order to recover
all source signals, in [14], the reference signals corresponding to the number of
source signals which can be extracted were used, and in [2], a deflation approach
was used, in which for each deflation, a different reference signal was used. The
EVA in [9] can work so as to recover simultaneously all source signals using only
one reference signal. However, the EVA has different performances for a different
choice of the reference signal. Moreover, the conventional EVAs, e.g., [2,9], are
sensitive to Gaussian noise.

In this paper, based on [8], we extend the EVA in [9] so as to work with as
little influence of Gaussian noise as possible, which is referred to as a robust
EVA (REVA). Then reference signals are chosen by utilizing the idea in [2], in
order to overcome the drawback of the EVA in [9]. However this choice causes
to use deflation methods. Since we want to show an algorithm without using
the deflation method, then the following procedure is proposed as a two-stage
EVA: 1) the EVA in [9] is executed with several iterations so that the solutions
achieving the BD can be roughly found. As the next stage, 2) the REVA is
executed using reference signals obtained by the scheme in [2], which are defined
as appropriately chosen outputs of the deconvolvers with the filters obtained
in Stage 1). Since the filters obtained in Stage 1) are linearly independent, the
REVA with the reference signals based on the filters does not need deflation
methods. Using this two-stage EVA, we try to overcome two drawbacks of the
conventional EVAs, that is, the performances of the EVA are

i) sensitive to Gaussian noise.
ii) sensitive to choosing reference signals.

Simulation results show the validity of the proposed algorithm.
The present paper uses the following notation: Let Z denote the set of all

integers. Let C denote the set of all complex numbers. Let Cn denote the set
of all n-column vectors with complex components. Let Cm×n denote the set
of all m × n matrices with complex components. The superscripts T , ∗, and
H denote, respectively, the transpose, the complex conjugate, and the complex
conjugate transpose (Hermitian) of a matrix. The symbols block-diag{· · ·} and
diag{· · ·} denote respectively a block diagonal and a diagonal matrices with the
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Fig. 1. The composite system of an unknown system and a deconvolver, and a reference
system

block diagonal and the diagonal elements {· · ·}. The symbol cum{x1,x2,x3,x4}
denotes the fourth-order cumulant of xi’s. Let i = 1, n stand for i = 1, 2, · · · , n.

2 Problem Formulation and Assumptions

We consider a MIMO system with n inputs and m outputs as described by

y(t) =
∑∞

k=−∞H(k)s(t − k) + n(t), t ∈ Z, (1)

where s(t) is an n-column vector of input (or source) signals, y(t) is an m-column
vector of system outputs, n(t) is an m-column vector of Gaussian noises, and
{H(k)} is an m × n impulse response matrix sequence. The transfer function of
the system is defined by H(z) =

∑∞
k=−∞ H(k)zk, z ∈ C.

To recover the source signals, we process the output signals by an n × m
deconvolver (or equalizer) W (z) described by

v(t) =
∞∑

k=−∞
W (k)y(t − k) =

∞∑

k=−∞
G(k)s(t − k) +

∞∑

k=−∞
W (k)n(t − k), (2)

where {G(k)} is the impulse response matrix sequence of G(z) := W (z)H(z),
which is defined by G(z) =

∑∞
k=−∞ G(k)zk, z ∈ C. The cascade connection of

the unknown system and the deconvolver is illustrated in Fig. 1.
Here, we put the following assumptions on the system, the source signals, the

deconvolver, and the noises.
A1) The transfer function H(z) is stable and has full column rank on the unit
circle |z| = 1, where the assumption A1) implies that the unknown system has
less inputs than outputs, i.e., n < m, and there exists a left stable inverse of the
unknown system.
A2) The input sequence {s(t)} is a complex, zero-mean and non-Gaussian ran-
dom vector process with element processes {si(t)}, i = 1, n being mutually inde-
pendent. Each element process {si(t)} is an i.i.d. process with a variance σ2

si
�= 0

and a nonzero fourth-order cumulant γi �= 0 defined as

γi = cum{si(t), si(t), s∗i (t), s
∗
i (t)} �= 0. (3)
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A3) The deconvolver W (z) is an FIR system of sufficient length L so that the
truncation effect can be ignored.
A4) The noise sequence {n(t)} is a zero-mean, Gaussian vector stationary
process whose component processes {nj(t)}, j = 1, m have nonzero variances
σ2

nj
, j = 1, m.

A5) The two vector sequences {n(t)} and {s(t)} are mutually statistically in-
dependent.

Under A3), the impulse response {G(k)} of the cascade system is given by

G(k) :=
∑L2

τ=L1
W (τ)H(k−τ), k ∈ Z, (4)

where the length L := L2 − L1 + 1 is taken to be sufficiently large. In a vector
form, (4) can be written as

g̃i = H̃w̃i, i = 1, n, (5)
where g̃i is the column vector consisting of the ith output impulse response of
the cascade system defined by g̃i := [gT

i1, g
T
i2, · · · , gT

in]T ,

gij := [· · · , gij(−1), gij(0), gij(1), · · ·]T , j = 1, n (6)

where gij(k) is the (i, j)th element of matrix G(k), and w̃i is the mL-column
vector consisting of the tap coefficients (corresponding to the ith output) of the
deconvolver defined by w̃i :=

[
wT

i1, w
T
i2, · · · , wT

im

]T ∈ CmL,

wij := [wij(L1), wij(L1 + 1), · · · , wij(L2)]
T ∈ CL, (7)

j = 1, m, where wij(k) is the (i, j)th element of matrix W (k), and H̃ is the n×m
block matrix whose (i, j)th block element H ij is the matrix (of L columns and
possibly infinite number of rows) with the (l, r)th element [H ij ]lr defined by
[Hij ]lr := hji(l − r), l = 0, ±1, ±2, · · ·, r=L1, L2, where hij(k) is the (i, j)th
element of the matrix H(k).

In the multisystem blind deconvolution problem, we want to adjust w̃i’s (i =
1, n) so that

[g̃1, · · · , g̃n] = H̃ [w̃1, · · · , w̃n] = [δ̃1, · · · , δ̃n]P , (8)

where P is an n × n permutation matrix, and δ̃i is the n-block column vec-
tor defined by δ̃i := [δT

i1,δ
T
i2,. . . ,δ

T
in]T , i = 1, n, δij := δ̂i, for i =j, otherwise

(· · · , 0, 0, 0, · · ·)T . Here, δ̂i is the column vector (of infinite elements) whose rth
element δ̂i(r) is given by δ̂i(r) = diδ(r − ki), where δ(t) is the Kronecker delta
function, di is a complex number standing for a scale change and a phase shift,
and ki is an integer standing for a time shift.

3 Eigenvector Algorithms (EVAs)

3.1 EVAs with Reference Signals

Jelonnek et al. [5] have shown in the single-input case that from the following
problem, that is,

Maximize Dvix = cum{vi(t), v∗i (t), x(t), x∗(t)} under σ2
vi

= σ2
sρi

, (9)
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a closed-form solution expressed as a generalized eigenvector problem can be
led by the Lagrangian method, where σ2

vi
and σ2

sρi
denote the variances of the

output vi(t) and a source signal sρi(t), respectively, and ρi is one of integers
{1, 2, · · · , n} such that the set {ρ1, ρ2,· · ·,ρn} is a permutation of the set {1,
2,· · ·,n}, vi(t) is the ith element of v(t) in (2), the reference signal x(t) is given
by fT (z)y(t) using an appropriate filter f(z) (see Fig. 1). The filter f(z) is called
a reference system. Let a(z) := HT (z)f(z) = [a1(z),a2(z),· · ·,an(z)]T , then x(t)
= fT (z)H(z)s(t) = aT (z)s(t). The element ai(z) of the filter a(z) is defined as
ai(z) =

∑∞
k=−∞ ai(k)zk and the reference system f(z) is an m-column vector

whose elements are fj(z) =
∑L2

k=L1
fj(k)zk, j = 1, m.

In our case, Dvix and σ2
vi

can be expressed in terms of the vector w̃i as,
respectively, Dvix = w̃H

i B̃w̃i and σ2
vi

= w̃H
i R̃w̃i, where B̃ is the m × m block

matrix whose (i, j)th block element Bij is the matrix with the (l, r)th element
[Bij ]lr calculated by cum{y∗

i (t−L1 − l+1), yj(t−L1 − r+1), x∗(t), x(t)} (l, r =
1, L) and R̃ = E[ỹ∗(t)ỹT (t)] is the covariance matrix of m-block column vector
ỹ(t) defined by

ỹ(t) :=
[
yT

1 (t), yT
2 (t), · · · , yT

m(t)
]T ∈ CmL, (10)

where yj(t) := [yj(t-L1), yj(t-L1-1),· · ·,yj(t-L2)]T ∈ CL, j = 1, m. It follows
from (10) that ỹ(t) is expressed as ỹ(t) = Dc(z)y(t), where Dc(z) is an mL×m
converter (consisting of m identical delay chains each of which has L delay ele-
ments when L1 = 1) defined by Dc(z) := block-diagonal{dc(z),· · ·,dc(z)} with
m diagonal block elements all being the same L-column vector dc(z) defined by
dc(z) = [zL1,· · ·,zL2 ]T . Therefore, by the similar way to as in [5], the maximiza-
tion of |Dvix| under σ2

vi
= σ2

sρi
leads to the following generalized eigenvector

problem;

B̃w̃i = λiR̃w̃i. (11)

Moreover, Jelonnek et al. have shown in [5] that the eigenvector corresponding
to the maximum magnitude eigenvalue of R̃†B̃ becomes the solution of the blind
equalization problem, which is referred to as an eigenvector algorithm (EVA). It
has been also shown in [9] that the BD for MIMO-IIR systems can be achieved

y(t)s(t) v(t)

n(t)

H(z)

x1(t)w1
T

reference
signals

output
signal

W(z)

G(z)

xn(t)wn
T

y(t)

Dc(z)

Fig. 2. The composite system of an unknown system and a deconvolver, and a reference
system
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with the eigenvectors of R̃†B̃, using only one reference signal. Note that since
Jelonnek et al. have dealt with SISO-IIR systems or SIMO-IIR systems, the
constructions of B̃, w̃i, and R̃ in (11) are different from those proposed in [5].

Castella et al. [2] have showed that from (9), a BD can be iteratively achieved
by using xi(t) = w̃iỹ(t) (i = 1, n) as reference signals (see Fig. 2), where the
number of reference signals corresponds to the number of source signals and w̃i

is an eigenvector obtained by R̃†B̃ in the previous iteration. Then a deflation
method was used to recover all source signals.

3.2 The Proposed EVA

In this paper, we want to avoid the conventional EVAs’ drawbacks, that is,
(a) they are sensitive to Gaussian noise and (b) difference performances are
obtained for a different choice of the reference signal x(t). In order to overcome
(a), a matrix F̃ is used instead of R̃ in (11). This idea comes from [8]. Hence,
(11) can be expressed as

B̃w̃i = λiF̃ w̃i, (12)

where F̃ is a set of m×m block matrices F
(4)
y,j,l, that is,

∑m
j=1

∑L2
l=L1

F
(4)
y,j,l, the

elements of F
(4)
y,j,l are defined by fourth-order cumulants, that is,

[
F

(4)
y,j,l

]

[p,q]l1l2

= cum{yq(t-L1-l2 + 1), y∗
p(t-L1-l1 + 1), yj(t-l), y∗

j (t-l)},

p, q, j = 1, m, l1, l2 = 1, L, l = L1, L2, (13)

Here the matrix B̃ can be expressed as

B̃ = H̃
H

Λ̃H̃ , (14)

where Λ̃ is the block diagonal matrix defined by

Λ̃ := block-diag{Λ1, Λ2, · · · , Λn}, (15)
Λi := diag{· · · , |ai(−1)|2γi, |ai(0)|2γi, |ai(1)|2γi, · · ·}, (16)

i = 1, n. It is shown by a simple calculation that F̃ becomes

F̃ = H̃
H

Ψ̃H̃, (17)

where Ψ̃ is the diagonal matrix defined by

Ψ̃ := block-diag{Ψ1, Ψ2, · · · , Ψn}, (18)
Ψ i := diag{· · · , γiãi(-1), γiãi(0), γiãi(1), · · ·}, i = 1, n, (19)

ãi(k) :=
∑m

j=1
∑L2

l=L1
|hji(k − l)|2, i = 1, n, k ∈ Z. (20)

Let the eigenvalues of the diagonal matrix Ψ̃−1Λ̃ be denoted by

μi(k) := |ai(k)|2/ãi(k), i = 1, n, k ∈ Z. (21)
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We put the following assumption on the eigenvalues μi(k)′s.
A6) All the eigenvalues μi(k)′s are distinct for i = 1, n and k ∈ Z.

Then we can prove the following theorem.

Theorem 1. Assume L1 = −∞ and L2 = ∞, and suppose the following condi-
tions holds true:
T1) All the eigenvalues μi(k)’s are distinct for i = 1, n and k ∈ Z.
Then the n eigenvectors corresponding to n nonzero eigenvalues μi(ki)’s of F̃ †B̃
become the vectors w̃i, i = 1, n, satisfying (8),

Outline of the proof: Based on (12), we consider the following eigenvector prob-
lem;

F̃
†
B̃w̃i = λiw̃i. (22)

Then, from (14) and (17), (22) becomes

(H̃
H

Ψ̃H̃)†H̃
H

Λ̃H̃w̃i = λiw̃i, (23)

Under L1 = −∞ and L2 = ∞, we have the following equations;

(H̃
H

Ψ̃H̃)† = H̃
†
Ψ̃

−1
H̃

H†
, H̃

H†
H̃

H
= I, (24)

which are shown in [12] along with their proofs. Then it follows from (23) and
(24);

H̃
†
Ψ̃

−1
Λ̃H̃w̃i = λiw̃i. (25)

Multiplying (25) by H̃ from the left side and using (24), (25) becomes

Ψ̃
−1

Λ̃H̃w̃i = λiH̃w̃i. (26)

Ψ̃−1Λ̃ is a diagonal matrix with diagonal elements μi(k), i = 1, n and k ∈ Z,
and thus (22) and (26) show that its diagonal elements μi(k)′s are eigenvalues
of matrix F̃ †B̃. Here we use the following fact;

lim
L→∞

(rank F̃ )/L = n, (27)

which is shown in [10] and its proof is found in [3]. Using this fact, the other
remaining eigenvalues of F̃ †B̃ are all zero. From the assumption A6), the n
nonzero eigenvalues μi(k) �= 0, i = 1, n, obtained by (26), that is, the n nonzero
eigenvectors w̃i, i = 1, n, corresponding to n nonzero eigenvalues μi(k) �= 0,
i = 1, n, obtained by (22) become n solutions of the vectors w̃i satisfying (8).

Remark 1. Since the matrix F̃ †B̃ consists of only fourth-order cumulants, the
eigenvectors derived from the matrix can be obtained with as little influence of
Gaussiannoise as possible,which is referred as a robust eigenvector algorithm (REVA).

In order to overcome (b), because it is claimed in [2] that the best performance
of the EVA can be obtained in the case where the recovered signals are used as
the reference signals, we use xi(t) = w̃iỹ(t) in Fig. 2 as the reference signals,
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where the number of the reference signals corresponds to the number of the
source signals. However, the EVA using the reference signals needs deflation
methods to recover all source signals (see [2]). On the contrary, we don’t want to
use deflation methods because the deflation is affected to the estimation errors
and hence as the deflation process comes near to the final step, the accuracy
of recovering source signals is getting worse. Therefore, the following two-stage
EVA is proposed.

Stage 1) Roughly estimate the eigenvectors of R̃†B̃ with the reference signal
x(t) in (9)

In Stage 1), all the vectors w̃i corresponding to (8) can be simultaneously ob-
tained using only one reference signal x(t) (see [9]). Since the estimate of R̃ has
a good accuracy with a few samples, compared with the estimate of F̃ , then first
of all the eigenvectors are roughly estimated with R̃†B̃. However, the vectors
obtained by R̃†B̃ are sensitive to Gaussian noise and their performances depend
on reference signals (see Section 4). Then,

Stage 2) Estimate the eigenvectors of F̃ †B̃i with the reference signals xi(t)
w̃iỹ(t), i = 1, n,

where w̃i (i = 1, n) are the eigenvectors obtained in Stage 1) and the matrix B̃
obtained by using each xi(t) is denoted by B̃i.

Each eigenvector obtained in Stage 2) is the one corresponding to the absolute
maximum eigenvalue |λi| for each F̃ †(t)B̃i(t). Although xi(t) = w̃iỹ(t) (i = 1, n)
are used as the reference signals (see Fig. 2), deflation methods are not needed
to recover all source signals in this stage, because the vectors w̃i’s in xi(t)’s,
which are obtained in Stage 1), have been already linearly independent.

If the matrices of R̃, F̃ , and B̃ can be estimated with good accuracies, the two-
stage algorithm can provide the solution in (8) with one iteration. In this paper,
however, since we confine ourselves to implement their estimates iteratively, the
procedure of the two-stage EVA is summarized as follows:

Choose an appropriate reference signal x(t) and appropriate initial values of
w̃

[1]
i (0), w̃

[2]
i (0), R̃(0), F̃ (0), B̃(0), B̃i(0)

for tl = 1 : tlall

if tl < ts
for t = td(tl − 1)+1:tdtl
Calculate R̃(t), F̃ (t), and B̃(t) by their moving averages.
end
Calculate the eigenvectors w̃

[1]
i (tl)’s from R̃†(t)B̃(t) (Stage 1)).

elseif tl ≥ ts
if tl == ts, w̃

[2]
i (tl − 1) = w̃

[1]
i (ts − 1)

for t = td(tl − 1)+1:tdtl
xi(t) = w̃

[2]T
i (tl − 1)ỹi(t)

Calculate F̃ (t) and B̃i(t) by their moving averages.
end
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Calculate the eigenvector w̃
[2]
i (tl) associated with the absolute

maximum eigenvalue |λi| from F̃ †(t)B̃i(t), i = 1, n (Stage 2)).
end
end

Here, tlall
denotes the total number of iterations and td denotes the number of data

samples for estimating the matrices R̃(t), F̃ (t), B̃(t), and B̃i(t). From a practical
viewpoint, it would be better to estimate the fourth-order cumulant matrix F̃ (t)
during tl = 1 to tlall

. w̃
[1]
i (t) and w̃

[2]
i (t) are the eigenvectors obtained for Stage 1)

and Stage 2), respectively. ts denotes an arbitrary integer satisfying 2 < ts < tlall.
For 0 < tl < ts and ts ≤ tl ≤ tlall

, the eigenvectors w̃
[1]
i (tl)’s and w̃

[2]
i (tl)’s are

iteratively calculated, respectively, according to Stage 1) and Stage 2).

4 Computer Simulations

To demonstrate the validity of the proposed algorithm, many computer simu-
lations were conducted. Some results are shown in this section. The unknown
system H(z) was set to be the same system with two inputs and three outputs
as in [9]. The source signals s1(t) and s2(t) were a sub-Gaussian signal which
takes one of two values, −1 and 1 with equal probability 1/2. The Gaussian
noises nj(t) with its variance σ2

nj
were included in the output yj(t) at various

SNR levels. The SNR was considered at the output of the system H(z). The pa-
rameters L1 and L2 in W (z) were set to be 0 and 11, respectively. As a measure
of performances, we used the multichannel intersymbol interference (MISI)
[11], which was the average of 50 Monte Carlo runs. In each Monte Carlo run,
the number of iterations tlall

was set to be 10, the number of data samples td
was set to be 5,000, and the threshold ts was set to be 6.

SNR (dB)
10 15 20 25 30

-20

-15

-10

0

-25

-5
(c)

(d)

(a)

(b)

(e)

Fig. 3. The performances of the proposed algorithm and the conventional EVAs with
varying SNR levels, in the cases of 5,000 data samples
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Fig. 3 shows the results of performances of the EVAs when the SNR levels were
respectively taken to be 10 through 30 dB for every 5 dB. The line (a) represents
the performance obtained by our proposed two-stage EVA, where in the EVA in
the stage 1), x(t) = f2(2)y2(t−2) was used as the reference signal and f2(2) was
randomly chosen from a Gaussian distribution with zero mean and unit variance.
The line (b) represents the performance obtained by only the REVA (ts = 1),
where the reference signal was given by the same equation as the line (a), but the
parameter f2(2) was given by another Gaussian distribution with zero mean and
unit variance. The lines (c) and (d) represent the performances obtained by only
the EVA (ts = 11) with respectively x(t) =

∑3
i=1 fi(2)yi(t−2) and f2(2)y2(t−2)

as the reference signal. Finally, the line (e) represents the performance obtained
by Castella et al. (CRMPA). From the line (b), the REVA has such a property
that as the SNR level decreases, it can provide better performances than the
EVA. That is, the REVA can work with as little influence of Gaussian noise
as possible. However for the high SNR levels its performance is not so good
compared with the EVA. From the lines (c) and (d), one can see that the EVA’s
performance depends on the choice of the reference signal. From the line (a), our
proposed algorithm has such a property that as the SNR level decreases, it is
more robust to Gaussian noise than the other algorithms, and for the high SNR
levels, its performance is almost the same as the CRMPA. Therefore from all the
results we conclude that our proposed algorithm can overcome the drawbacks of
the conventional EVAs.

5 Conclusions

We have proposed a two-stage algorithm obtained by combining the EVA and
the REVA for solving the BD problem. The proposed algorithm provides better
performances than the conventional EVAs, because the proposed algorithm can
overcome the drawbacks of the conventional EVAs, that is,

– The EVA is sensitive to Gaussian noise.
– The EVA depends on the selection of the reference signal.

Computer simulations have demonstrated the effectiveness of the proposed EVA.
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