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Abstract—This paper deals with the blind equalization
problem of a single-input single-output infinite-impulse-re-
sponse (SISO-IIR) system with additive Gaussian noise. To solve
the problem, we propose a “super-exponential method” (SEM).
The novel point of the proposed SEM is that, even when Gaussian
noise is added to the output of the system, the blind equalization
can be achieved with as little influence of Gaussian noise as
possible; hence the proposed SEM is referred to as a “robust
super-exponential method” (RSEM). Simulation results show the
validity of the proposed RSEM.

Index Terms—Blind equalization, Gaussian noise, single-input
single-output infinite-impulse-response (SISO-IIR) systems,
super-exponential methods (SEMs).

I. INTRODUCTION

I N applications such as mobile or wireless communications,
an input signal often propagates through a multipath envi-

ronment of an unknown transfer function between the signal
source and a receiver. Blind equalization is used to reconstruct
the original input signal and/or to estimate the transfer function
from the received signal [1].

Recently, Shalvi and Weinstein proposed an attractive ap-
proach for the blind equalization of single-input single-output
(SISO) systems, which is called the super-exponential method
(SEM) [9], and then several researchers extended the idea of the
SEM, e.g., see [5], [7], [11], and [12] and references therein.
One of the attractive properties of the SEM is to converge iter-
atively at a super-exponential rate to a desired solution which
achieves the blind equalization; hence the “super-exponential”
method was named. However, the SEMs have such a significant
drawback that, if the SEMs are applied to the blind equalization
in the presence of additive Gaussian noise, then the convergence
of the SEMs close to the desired solutions cannot be guaranteed
[9]. Such algorithms based on the second-order statistics as the
fixed-point Bussgang [2] are also sensitive to Gaussian noise.
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Fig. 1. Composite system of an unknown system and a filter.

In this paper, an approach is proposed in order to overcome
the drawback of the SEMs. In the proposed approach, only
higher order cumulants are used; consequently, the proposed
algorithm can be used to detect the desired solutions with
as little influence of Gaussian noise as possible, from which
the proposed SEM is referred to as a robust super-exponen-
tial method (RSEM). Computer simulations are presented to
demonstrate the validity of the proposed RSEM.

II. PROBLEM FORMULATION AND ASSUMPTIONS

We consider a SISO system with an additive noise as de-
scribed by

(1)

where is an unobserved input sequence generated from a
discrete-time stationary random process, is the impulse re-
sponse of an unknown time-invariant system defined by

, and and denote the output of the
system and Gaussian noise, respectively. Fig. 1 illustrates a di-
agram of the basic problem. Namely, our objective in this paper
is to propose a method for adjusting the equalizer

so that becomes

(2)

even if the Gaussian noise is included into the output ,
where in is a nonzero complex number standing for a
scale change and a phase shift, and the superscript “ ” of
denotes an integer standing for a constant delay. Note that the
notation is used instead of the commonly used in the

-transform [4]. We allow all of the above signals and the pa-
rameters of the system and equalizer to be complex-valued.

To find the solution (2), we put the following assumptions on
the system, the input signal, and the equalizer.

A1) The unknown system is a stable, possibly
nonminimum-phase, linear time-invariant filter
whose inverse (which may be noncausal and stable)

exists.
A2) The input sequence is a complex, zero-mean,

non-Gaussian random process. Moreover, the process
is an i.i.d. process with a nonzero variance
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and a nonzero st-order cumulants, defined
as

(3)

where and are nonnegative integers such that
, and denotes the

th-order (joint) cumulant of .
A3) The equalizer is a finitie-im-

pulse-response (FIR) system of sufficient length
so that the truncation effect can be ignored.

The combined system response subject to the finite length
restriction is

(4)

In a vector notation, (4) can be rewritten as

(5)

where is a possibly infinite vector of the combined system
, is an -column vector, that

is, , and is a ma-
trix of columns and possibly infinite number of rows, whose
elements are , ,

.

III. ROBUST SUPER-EXPONENTIAL METHODS

A. Two-Step Iterative Procedure of Vector

To find the solution in (2), the following two-step iterative
procedure with respect to the elements ’s of is used:

(6)

(7)

where and stand for the results of the first step and
the second step per iteration, in the right-hand side of
(6) is at the previous step [note that, at first iteration,

in the right-hand side of (6) is an initial value of ],
and are nonnegative integers such that ,

denotes the fourth-order cumulant of defined by
, denotes a positive

value (in Section III-B, it will be shown how we choose the
values of ’s), the superscript denotes the complex conju-
gate, and denotes the variance of , which is the output
of the equalizer (see Fig. 1).

The main difference between the two-step procedures in the
conventional SEMs (e.g., [3], [5], [7], [9], [12]) and the one pro-
posed here is the denominator of the first step, that is, the con-
ventional first-step procedures include the second-order cumu-
lants of , whereas our proposed one, that is, (6), possesses
only higher order cumulants of .

As for the convergence of the two-step iterative procedure (6)
and (7), under the assumptions that the equalizer is an IIR
filter and that the noise in (1) is absent, we show only a theorem
of convergence (Theorem 1). The reader is referred to [9] for the
proof. However, when we must take account of cases such that the

equalizer is not of sufficient length for (i.e., an undermod-
eled case shown in [8]) and that the noise has a strong power, we
should note that the desired solutions of the two-step procedure
may not fulfill (2) but may approximately fulfill (2). A complete
analysis of the SEMs in undermodeled cases is shown in [8].

Theorem 1 [9]: Let be an initial value for iterations
of two steps (6) and (7) for each . Let be
nonnegative scalar defined as

(8)

Let be . Suppose the
index is unique, that is, for any
other , then, as , it follows that

for
for

(9)

where denotes the value obtained in the th cycle of the
iterations of two steps (6) and (7) and is a scalar positive con-
stant.

Remark 1: It is shown in [5, Section IV] that the integer
shown in Theorem 1 is unique except for pathological cases.

B. Two-Step Iterative Procedure for

To find the solution in (2), we adjust the elements of
the vector so that is equal to the vector whose

th element is for some fixed , where is the
Kronecker delta function and is an integer standing for the
same time shift as in (2). However, since is of finite length,
it may be only required that is chosen to minimize the distance
(norm) between and . Hence, in order to derive an
algorithm with respect to , we consider the following weighted
least-squares problem:

(10)

Here, is a diagonal matrix whose diagonal elements all are
positive values. The solution is known to be given by

(11)

Note that, from assumption A1), is invertible for any
, because is of full column rank and is a nonsingular

diagonal matrix (this fact is also mentioned in [9, p. 508, line
10] without proof). The update rules of in the conventional
and the proposed SEMs are based on (11).

In the conventional SEMs [5], [7], [9], [12], the positive diag-
onal elements of in (11) are set to 1 or the variance of the input

. This means that is calculated by the second-order
statistics of the output . We consider that this is the reason
why the conventional SEMs are sensitive to Gaussian noise.

In what follows, we shall show that in (11) can be
applied to a set of fourth-order cumulants of the output , if
we choose appropriately a diagonal matrix in (10). To this
end, as the diagonal elements of , we
choose the ’s expressed as

(12)

(13)

where in (12) denotes the sign of , that is,
if , if , and if , and
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in (13) denotes the element of in (5), that is, the parameter
of , , .

Remark 2: The matrix is generally a nonsingular matrix
except for pathological cases, and the elements of are posi-
tive values. To avoid completely the pathological cases, the pa-
rameters and in (13) must be set to enough large negative
and positive values (say, and ), respectively. Then
in (13) becomes a positive constant value for all ’s.

From (12) and (13), can be expressed as ,
where is the identity matrix and is also a diagonal matrix
whose elements are , . Then, substituting

into in (11), the right-hand side of (11) becomes

(14)

because is a diagonal matrix whose elements all are
either 1 or 1.

Here, in (14) can be expressed by the fourth-order
cumulants matrix of , which is defined by

[10], that is,

(15)

where denotes the th element of the ma-
trix , in which ’s take the values of .
As for in (14), by using (6) with in (13) and
the similar way as in [5], it can be given by

(16)

where ’s are given by

. Therefore, it can be seen from (15)
and (16) that the right-hand side of (11) can be calculated by
the fourth-order statistics of the output , provided that in
(10) is replaced by . Then, (14) can be expressed as

(17)

where . It can be easily shown that the second
step (7) is expressed as

(18)

Hence, (17) and (18) are our proposed two steps to modify .
From (17), it can be seen that, since the update procedure of
consists of only higher order cumulants of , then the two-

step procedure (17) and (18) becomes less sensitive to Gaussian
noise. [Note that, since (18) is only used to normalize , even
if is a second-order statistic, there is less effect of Gaussian
noise for finding the desired solution , that is, .]
This is a novel key point of our proposed SEM, from which the
proposed method is referred to as a robust super-exponential
method (RSEM).

IV. COMPUTER SIMULATIONS

To demonstrate the validity of the proposed method, many
computer simulations were conducted. Some results are shown
in this section. The unknown system was set to be an
FIR filter of length 7 with the impulse responses (0.4, 1, 0.7,

0.6, 0.3, 0.4, 0.1), which is the same system as in [9]. We
used an equalizer of length which was initialized to

, which is also
the same situation as in [9]. The input of the system
was sub-Gaussian which takes one of two values, 1 and 1 with
equal probability 1/2. The parameters and in (6) were set
to be and , respectively, that is, in (3) was the
fourth-order cumulants of . Then the value of is 2. The
Gaussian noise with its variance was included in the
output at various SNR levels. The SNR was considered at
the output of the system .

The matrix in (17) was calculated using a moving average
defined by

(19)

in which , ,
denotes the trace of the matrix , and is a moving average
of calculated by

(20)

Here, denotes an -column vector whose elements are
. The vector in (17)

was calculated using a moving average defined by

(21)

in which is a moving average defined by

(22)

where and . The parameters
and were set to be 0.999 99 and 0.995, respectively.

As a measure of performance, we used the intersymbol inter-
ference (ISI) defined in the logarithmic (dB) scale by

(23)

where is the component of having the maximal ab-
solute value (the leading tap). The value of ISI becomes
if ’s satisfying (2) are obtained and, hence, a large negative
value of ISI indicates the proximity to the desired solution. How-
ever, the ISI is not enough as a measure of performances. Thus,
we used the mean-squared estimation error (MSE) defined as

(24)

and the bit error rate (BER), where in (24) denotes the
expectation of , , in which the parameter is

so that the leading tap becomes 1, and denotes
a constant delay. We note that and are found when the
ISI in (23) is calculated. When the BER is calculated, we apply

to the output of the equalizer .
For comparison, the SEM proposed in [9] was used. The pa-

rameters in (21) and in (22) were set to be 0.9998 and
0.999, respectively. In the SEM, in (17) was calculated by

in (20), where the parameter in (20) was set to be
0.999.
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Fig. 2. Performances of the RSEM and the SEM with varying SNR levels (a)
in the cases of 1000, 2500, and 5000 samples and (b) in the cases of 10 000,
15 000, and 30 000 samples.

Fig. 2 shows the results of the ISIs of the RSEM and SEM, in
the cases where the SNR levels were taken to the values ranging
from 0 through 20 dB to dB . The ISIs shown
in Fig. 2 are the average of the results obtained by 100 Monte
Carlo trials, and, for each trial, the vector was modified by 20
iterations; for each iteration, the matrix corresponding to each
method and the vector were estimated with (19)–(22), using
several data samples (see Fig. 2). The vertical and horizontal
axes in Fig. 2 represent the average of ISIs denoted by
and the SNR, respectively.

It can be seen from Fig. 2(a) that, when the data samples are
less than 5000, for each sample data and each SNR level, the per-
formances of the RSEM after 20 iterations are better than those
of the SEM. However, in order to use the feature of the RSEM,
which is insensitive to Gaussian noise, at least 5000 samples
are needed. Note that this statement can be effective for the case
that the SNR level is more than 5 dB. From Fig. 2(b), it can be
seen that, as the number of data samples increases, the RSEM
gives better performance for every SNR level, whereas the per-
formance of the SEM hardly changes. However, if the obtained
results are viewed from the point of convergence speed, it can
be discovered that, in the SNR levels of more than 15 dB, the
convergence speed of the RSEM is slower than the SEM (see
Fig. 3). [Note that Fig. 3 shows the case of 10 000 samples and

dB. The horizontal axis in Fig. 3 denotes the number
of iterations.] This tendency was observed when the number of
data samples is 5000 and the SNR level is more than 10 dB.
This has resulted from the fact that it is difficult to estimate
the fourth-order cumulant matrix in the RSEM with high ac-
curacy, compared with the second-order cumulant matrix in
the SEM. However, even if the matrix corresponding to the
RSEM is its theoretical value, the RSEM has a slightly slower
convergence than the SEM (see Fig. 4). Indeed, it can be seen

Fig. 3. Performances of the RSEM and the SEM with varying number of
iterations in the cases that the SNR level is 1 and the data length is 10 000
samples.

Fig. 4. Performances of the RSEM for the cases thatRRR is its theoretical value
and the SEM for SNR = 1 dB (10 000 samples) with varying number of
iterations, and the ideal convergence curves of the RSEM and the SEM.

from Fig. 4 that the convergence ability of the RSEM is slightly
worse than that of the SEM (see the dashed and dotted lines,
respectively, in Fig. 4, which were obtained by using the theo-
retical values of and corresponding to each method).

From these results, we consider that the RSEM is effective
for solving the blind equalization problem in the presence of
Gaussian noise. However, if quick responses are demanded to
the equalizers in a case where, for 5000 samples the SNR level
is more than 10 dB or for more than 10 000 sample, the SNR
level is more than 15 dB, it is better to use the SEM. For less
than 2500 samples, we consider that one can choose either the
RSEM or the SEM.

Fig. 5 shows the results of the MSEs and bit error rates (BERs)
which are the averages of the resultsobtained by 100 Monte Carlo
trials. For each trial, the vector was modified for 20 iterations,
using (17) and (18) corresponding to each method, and the MSE
and BER was calculated by using 1000 outputs of the equal-
izer with the modified . For each iteration, the matrix cor-
responding to each method and the vector were estimated by
15 000 samples, using (19)–(22). Since the values of the BERs
of both the methods in the cases of and dB were
zero, these values are not plotted in Fig. 5.

From Fig. 5, it can be seen that, as the SNR level is lower, the
MSE of the RSEM becomes worse than that of the SEM. This
results from the fact that the convergence point of the SEM is
essentially equivalent to Wiener filtering such that the MSE is
minimized. Under the influence of the results, the BER of the
RSEM is also worse than that of the SEM. However, it can be
seen that, although the MSE of the RSEM becomes worse as
the SNR level is lower, the difference between the BERs of the
two methods becomes smaller. This results from the fact that the
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Fig. 5. MSEs and BERs of the RSEM and the SEM with varying SNR levels.

Fig. 6. Performances obtained by adaptively implementing the RSEM and the
SEM, in each of the three cases, SNR = 5 dB, 10 dB, and1 dB.

TABLE I
FLOPS AND ELAPSED TIME OF THE RSEM AND SME FOR ONE ITERATION

RSEM can achieve estimating the inverse of with as little
influence of Gaussian noise as possible. From this result and
this property of the RSEM, we motivate to the investigation of
estimating the inputs by using a Kalman filter (KF), for example,
the KF proposed by Marcos [6]. However, this is beyond the
scope of this paper. Therefore, the results will be shown in a
forthcoming paper.

Fig. 6 shows the results of the performances obtained by
adaptively implementing the RSEM and SEM, in the cases of

5, 10, and 20 dB. In this example, the vector is adap-
tively modified by using

(25)

(26)

where the vector on the right-hand side of (26) is equal
to on the left-hand of (25). At (see in
Fig. 6), the impulse response of was changed
to . Note that for through 5,000 and 40 001
through 45,000, was not modified, but and were estimated
by using (19)–(22).

It can be seen from Fig. 6 that, as the SNR decreases, the
adaptive RSEM (ARSEM) appears to converge to better perfor-
mance, compared with the adaptive SEM (ASEM). A detailed
investigation of the performances of the ARSEM and ASEM
will be dealt with in a forthcoming paper, because of the page
limitation.

Finally, we shall show the computational complexities
of the RSEM and SEM by using the flops (floating-point
operations) and elapsed time for one iteration for 5000 sam-
ples. Table I shows these results. These values pertain to a
3.06-GHz–1.00-GB machine. For the interested reader, these
values of other blind equalization algorithm (including the
SEM) can be found in [2].

From all of the results, we conclude that, although the com-
putational complexity of the RSEM is more than the SEM, the
RSEM indicates better performances than the SEM in the case
that the SNR level is lower than 10 dB; hence, for solving the
blind equalization in the presence of Gaussian noise, the RSEM
has sufficient merits.

V. CONCLUSION

We have proposed an SEM for solving a blind equalization
problem, which is referred to as a robust super-exponential
method (RSEM). The RSEM is robust against Gaussian noise,
which means that the RSEM can be used to estimate the inverse
of the unknown transfer function , even if Gaussian noise
is added to the output of [see (1)]. This is a novel property
of the proposed method not possessed by conventional SEMs.
Using the computer simulations, we presented several results
in which the RSEM was compared with the SEM under several
conditions.

As for further work, we consider extending the RSEM so
that the RSEM can be applied to multiple-input multiple-output
systems. In this research, we will deal with the RSEMs incor-
porated with Kalman filters and their adaptive implementations
besides.
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