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ROBUST EIGENVECTOR

ALGORITHMS FOR BLIND

DECONVOLUTION OF MIMO
LINEAR SYSTEMS*
Mitsuru Kawamoto,1,2 Kiyotaka Kohno,3 and
Yujiro Inouye3,4

Abstract. This paper presents eigenvector algorithms (EVAs) for blind deconvolution of
multiple-input, multiple-output infinite impulse response channels (convolutive mixtures).
An attractive feature of one of the proposed EVAs is that it is insensitive to Gaussian
noises which are added to the outputs of the channels; hence, the proposed EVA is referred
to as a “robust” eigenvector algorithm. Simulation results show the validity of the proposed
EVAs.
Key words: Eigenvector algorithms, robust eigenvector algorithms, blind deconvolution,
multiple-input, multiple-output infinite impulse response channels, Gaussian noise.

1. Introduction

In the last decade, blind signal processing (BSP), which includes, e.g., blind
source separation (BSS), blind deconvolution (BD), and blind equalization (BE),
has attracted many researchers in the fields of speech signal processing, communi-
cation systems, biomedical signal processing, and so on. One of the main reasons
may be that a BSP technique can extract a set of source signals from observations
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that are mixtures of the source signals, even if neither the particular information
on source signals nor the mixing processes are known a priori.

In this paper, we deal with the BD problem for multiple-input, multiple-output
(MIMO) infinite impulse response (IIR) channels. To solve this problem, we
use eigenvector algorithms (EVAs) [6], [7], [15]. The first proposal of an EVA
was done by Jelonnek et al. [6]. They proposed the EVA for solving BE prob-
lems of single-input, single-output (SISO) channels or single-input, multiple-
output (SIMO) channels. In [15], several procedures for the BSS of instantaneous
mixtures, using the generalized eigenvalue decomposition, have been introduced.
Recently, the authors have proposed an EVA that can solve BSS problems in the
case of MIMO static systems (instantaneous mixtures) [9], [10].

In this paper, based on the idea in [9], [10], we shall show that EVAs can be
used to solve the BD problem of MIMO-IIR channels, where the proposed EVAs
have some technical difficulties that are different from our conventional EVAs in
[9], [10] (see Section 3). Moreover, it will be shown that the proposed EVA can be
modified to treat noisy situations such that the BD can be achieved with as little
influence of Gaussian noise as possible; hence this type of EVA is referred to as
a “robust” EVA (REVA). Computer simulations are presented to demonstrate the
validity of the proposed EVA and REVA.

This paper uses the following notation. Let Z denote the set of all integers. Let
C denote the set of all complex numbers. Let Cn denote the set of all n-column
vectors with complex components. Let Cm×n denote the set of all m × n matrices
with complex components. The superscripts T , ∗, H , and † denote, respectively,
the transpose, the complex conjugate, the complex conjugate transpose (Hermi-
tian) and the (Moore-Penrose) pseudoinverse operations of a matrix. The symbol
I denotes an identity matrix. The symbols block-diag{· · · } and diag{· · · } denote
respectively a block diagonal and a diagonal matrix with the block diagonal and
the diagonal elements {· · · }. The symbol cum{x1,x2,x3,x4} denotes a fourth-order
cumulant of xi ’s. Let i = 1, n stand for i = 1, 2, . . . , n.

2. Problem formulation and assumptions

We consider a MIMO channel with n inputs and m outputs as described by

y(t) =
∞∑

k=−∞
H(k)s(t − k) + n(t), t ∈ Z , (1)

where s(t) is an n-column vector of input (or source) signals, y(t) is an m-column
vector of channel outputs, n(t) is an m-column vector of Gaussian noises, and
{H(k)} is an m ×n impulse response matrix sequence. The transfer function of the
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Figure 1. The composite system of an unknown system and a deconvolver, and a reference filter.

channel is defined by

H(z) =
∞∑

k=−∞
H(k)zk, z ∈ C. (2)

To recover the source signals, we process the output signals by an n × m
deconvolver (or equalizer) W(z) described by

z(t) =
∞∑

k=−∞
W(k)y(t − k)

=
∞∑

k=−∞
G(k)s(t − k) +

∞∑
k=−∞

W(k)n(t − k), (3)

where {G(k)} is the impulse response matrix sequence of G(z) := W(z)H(z),
which is defined by

G(z) =
∞∑

k=−∞
G(k)zk, z ∈ C. (4)

The cascade connection of the unknown system and the deconvolver is illustrated
in Figure 1.

The objective of multichannel blind deconvolution is to construct a deconvolver
that recovers the original source signals only from their convolutive mixtures.

We put the following assumptions on the channel, the source signals, the de-
convolver, and the noises.

(A1) The transfer function H(z) is stable and has full column rank on the unit
circle |z| = 1, where the assumption A1 implies that the unknown system has
less inputs than outputs, i.e., n < m, and there exists a left stable inverse of the
unknown system.

(A2) The input sequence {s(t)} is a complex, zero-mean, and non-Gaussian
random vector process with element processes {si (t)}, i = 1, n being mutually
independent. Each element process {si (t)} is an i.i.d. process with a variance σ 2

si
�=

0 and a nonzero fourth-order cumulant γi �= 0 defined as

γi = cum{si (t), si (t), s∗
i (t), s∗

i (t)} �= 0. (5)
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(A3) The deconvolver W(z) is a finite impulse response (FIR) channel of suffi-
cient length L so that the truncation effect can be ignored.

(A4) The noise sequence {n(t)} is a zero-mean, Gaussian vector stationary
process whose component processes {n j (t)}, j = 1, m have nonzero variances
σ 2

n j
, j = 1, m.

(A5) The two vector sequences {n(t)} and {s(t)} are mutually statistically in-
dependent.

Under A3, the impulse responses G(k) for k ∈ Z of the cascade system are
given by

G(k) :=
L2∑

τ=L1

W(τ )H(k−τ), k ∈ Z , (6)

where the length L := L2 − L1 + 1 is taken to be sufficiently large. In a vector
form, (6) can be written as

g̃i = H̃w̃i , i = 1, n, (7)

where g̃i is the column vector consisting of the i th output impulse response of the
cascade system defined by

g̃i :=
[
gT

i1, gT
i2, . . . , gT

in

]T
, (8)

gi j := [
. . . , gi j (−1), gi j (0), gi j (1), . . .

]T
, j = 1, n, (9)

where gi j (k) is the (i, j)th element of matrix G(k), and w̃i is the mL-column
vector consisting of the tap coefficients (corresponding to the i th output) of the
deconvolver defined by

w̃i :=
[
wT

i1, wT
i2, . . . , wT

im

]T ∈ CmL , (10)

wi j := [
wi j (L1), wi j (L1 + 1), . . . , wi j (L2)

]T ∈ CL , j = 1, m, (11)

where wi j (k) is the (i, j)th element of matrix W(k), and H̃ is the n × m block
matrix defined by

H̃ :=




H11 H12 · · · H1m

H21 H22 · · · H2m
...

...
...

...

Hn1 Hn2 · · · Hnm


 (12)

whose (i, j)th block element Hi j is the matrix (of L columns and possibly infinite
number of rows) with the (l, r)th element [Hi j ]lr defined by

[Hi j ]lr := h ji (l − r),

l = 0, ±1, ±2, . . . , r = L1, L2, (13)

where hi j (k) is the (i, j)th element of the matrix H(k).
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In the multichannel blind deconvolution problem, we want to adjust w̃i ’s (i =
1, n) so that

[g̃1, . . . , g̃n] = H̃[w̃1, . . . , w̃n] = [δ̃1, . . . , δ̃n]P, (14)

where P is an n × n permutation matrix, and δ̃i is the n-block column vector
defined by

δ̃i := [δT
i1, δ

T
i2, . . . , δT

in]T , i = 1, n (15)

δi j :=
{

δ̂i , if i = j,

(· · · , 0, 0, 0, · · · )T , otherwise.
(16)

Here, δ̂i is the column vector (of infinite elements) whose r th element δ̂i (r) is
given by

δ̂i (r) = diδ(r − ki ), (17)

where δ(t) is the Kronecker delta function, di is a complex number standing for a
scale change and a phase shift, and ki is an integer standing for a time shift.

3. Eigenvector algorithms (EVAs)

3.1. Analysis of EVAs with reference signals for MIMO-IIR
channels

In this subsection, we assume that there is no noise n(t) in the output y(t), and
then analyze EVAs for the MIMO channel (1). Under this assumption, to solve the
BD problem, the following cross-cumulant between zi (t) and a reference signal
x(t) (see Figure 1) is defined:

Dzi x = cum{zi (t), z∗
i (t), x(t), x∗(t)}, (18)

where zi (t) is the i th element of z(t) in (3) and the reference signal x(t) is given
by f T (z)y(t) := ∑m

j=1
∑L2

k=L1
f j (k)y j (t − k), using an appropriate filter f (z),

where f (z) is an m-column vector whose elements are f j (z) = ∑L2
k=L1

f j (k)zk ,

j = 1, m. The filter f (z) is called a reference filter. Let a(z) := HT (z)f (z) =
[a1(z), a2(z), . . . , an(z)]T , then x(t) = f T (z)H(z)s(t) = aT (z)s(t). The element
ai (z) of the filter a(z) is defined as ai (z) = ∑∞

k=−∞ ai (k)zk . Then it can be seen
from (7) that the equation a(z) = HT (z)f (z) can be rewritten in vector notation
as

ã = H̃f̃ , (19)
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where ã is the vector whose elements are the parameters ai (k) of the filter ai (z),
that is,

ã :=
[
aT

1 , aT
2 , . . . , aT

n

]T
, (20)

ai := [. . . , ai (−1), ai (0), ai (1), . . . ]T , (21)

f̃ is the mL-column vector whose elements are the parameters f j (k) of f j (z),
defined by

f̃ :=
[
f T
1 , f T

2 , . . . , f T
m

]T ∈ CmL , (22)

f j := [
f j (L1), f j (L1 + 1), . . . , f j (L2)

]T ∈ CL , j = 1, m, (23)

and H̃ in (19) is the same n × m block matrix as (12).

Remark 1. Using (18) with the reference signal x(t) as a cost function, a closed-
form solution can be derived to solve the BD problem. For the details of the merits
of the reference signal, see [6].

Researches using the idea of reference signals to solve the BSP problem, to our
best knowledge, have been made by Adib et al. [1], [2], Rhioui [16], and Jelonnek
et al. [6], [7]. Adib et al. [1], [2] have shown that the BSS for instantaneous mix-
tures can be achieved by maximizing |Dzi x | in (18) under the constraint σ 2

zi
= σ 2

sρi

(= 1 if σ 2
si

= 1 for all i = 1, n), but they have not proposed any algorithm for
achieving this idea, where σ 2

zi
and σ 2

sρi
denote the variances of the output zi (t)

and a source signal sρi (t), respectively, and ρi is an integer {1, 2, . . . , n} such that
the set {ρ1, ρ2, . . . , ρn} is a permutation of the set {1, 2, . . . , n}. Rhioui et al. [16]
have proposed quadratic MIMO contrast functions for the BSS with convolutive
mixtures. In their method, the number of reference signals corresponds to the
number of source signals that can be extracted. Moreover, they claimed that as
a reference signal, it is a practical valid choice to choose a signal obtained by
whitening the outputs of the MIMO convolved system. Jelonnek et al. [6], [7] have
shown in the single-input case that, by the Lagrangian method, the maximization
of |Dzi x | under σ 2

zi
= σ 2

sρi
leads to a closed form expressed as a generalized

eigenvector problem. In our case, Dzi x and σ 2
zi

can be expressed in terms of the
vector w̃i as, respectively,

Dzi x = w̃H
i B̋w̃i , (24)

σ 2
zi

= w̃H
i R̋w̃i , (25)

where B̃ is the m × m block matrix defined by

B̃ :=




B11 B12 · · · B1m

B21 B22 · · · B2m
...

...
...

...

Bm1 Bm2 · · · Bmm


 (26)
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whose (i, j)th block element Bi j is the matrix with the (l, r )th element [Bi j ]lr
calculated by cum{y∗

i (t −L1 −l +1), y j (t −L1 −r +1), x∗(t), x(t)} (l, r = 1, L)
and R̃ = E[ỹ∗(t)ỹT (t)] is the covariance matrix of m-block column vector ỹ(t)
defined by

ỹ(t) :=
[
yT

1 (t), yT
2 (t), . . . , yT

m(t)
]T ∈ CmL , (27)

y j (t) := [
y j (t − L1), y j (t − L1 − 1), . . . , y j (t − L2)

]T ∈ CL , j = 1, m.

(28)

Therefore, by a similar method as used in [6], [7], the maximization of |Dzi x |
under σ 2

zi
= σ 2

sρi
leads to the following generalized eigenvector problem:

B̃w̃i = λR̃w̃i . (29)

Moreover, Jelonnek et al. have shown that the eigenvector corresponding to the
maximum magnitude of the eigenvalues of R̃†B̃ becomes the solution of the blind
equalization problem in [6], [7], which is referred to as an eigenvector algorithm
(EVA). Note that since Jelonnek et al. have dealt with SISO-IIR channels or
SIMO-IIR channels, the constructions of B̃, w̃i , and R̃ in (29) are different from
those proposed in [6], [7]. In this paper, under the assumption that any reference
filter f (z) is used, we want to show how the eigenvector algorithm (29) works for
the BD of the MIMO-IIR channel (1).

To this end, we use the following equalities:

R̃ = H̃H Σ̃H̃, (30)

B̃ = H̃H Λ̃H̃, (31)

where Σ̃ is the block diagonal matrix defined by

Σ̃ := block-diag{Σ1,Σ2, . . . ,Σn}, (32)

Σi := diag{. . . , σ 2
si
, σ 2

si
, σ 2

si
, . . . }, i = 1, n, (33)

and Λ̃ is the block diagonal matrix defined by

Λ̃ := block-diag{Λ1,Λ2, . . . ,Λn}, (34)

Λi := diag{. . . , |ai (−1)|2γi , |ai (0)|2γi , |ai (1)|2γi , . . . }, i = 1, n. (35)

As both Σ̃ and Λ̃ become diagonal, (30) and (31) show that the two matrices R̃
and B̃ are simultaneously diagonalizable. The proof of deriving (31) is given in
Appendix A.

In the following theorem, we confine ourselves to the case m = n for simplicity
of discussion, although our results are expandable to the case m > n. Let the

eigenvalues of the diagonal matrix Σ̃
−1

Λ̃ be denoted by

λi (k) := |ai (k)|2γi/σ
2
si
, i = 1, n, k ∈ Z . (36)
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Theorem 1. Assume L1 = −∞ and L2 = ∞, and suppose the following three
conditions hold true:

(T1-1) There exist n integers ki ∈ Z such that the n eigenvalues λi (ki ) are
nonzero and distinct.

(T1-2) For each i = 1, n, λi (ki ) �= λi (k) for any k �= ki .
(T1-3) For each i = 1, n, λi (ki ) �= λ j (k) for any j �= i and k ∈ Z.

If the noise n(t) is absent in (1), then the n eigenvectors w̃i corresponding to the
n nonzero eigenvalues λi (ki ) of R̃−1B̃ become the vectors w̃i satisfying (14).

Remark 2. The above three conditions can be replaced by a stronger condition
that all the eigenvalues λi (k) are distinct for i = 1, n and k ∈ Z .

Proof. If m = n, the covariance matrix R̃ is positive definite (see Appendix B or
[11]). Therefore, based on (29), we consider the following eigenvector problem:

R̃−1B̃w̃i = λw̃i . (37)

Then, from (30) and (31), (37) becomes

(H̃H Σ̃H̃)−1H̃H Λ̃H̃w̃i = λw̃i . (38)

It can be shown that H̃ is nonsingular when L1 = −∞ and L2 = ∞ (see
Appendix C). Then (38) becomes

H̃−1Σ̃
−1

Λ̃H̃w̃i = λw̃i . (39)

Multiplying (39) by H̃ from the left side, (39) becomes

Σ̃
−1

Λ̃H̃w̃i = λH̃w̃i . (40)

Let

g̃i := H̃w̃i , (41)

then (40) becomes

Σ̃
−1

Λ̃g̃i = λg̃i . (42)

Note that Σ̃
−1

Λ̃ is a diagonal matrix with diagonal elements λi (k), i = 1, n and
k ∈ Z , and that its diagonal elements are the eigenvalues of matrix R̃−1B̃. From
the three conditions T1-1, T1-2 and T1-3, the n eigenvalues λi (ki ) are nonzero
and distinct, and for each i = 1, n, the eigenvalues λi (ki ) are different from all the

remainder eigenvalues of Σ̃
−1

Λ̃. Therefore, the n nonzero eigenvectors g̃i �= 0,
i = 1, n, corresponding to the n nonzero eigenvalues λi (ki ) �= 0, i = 1, n,
obtained by (42), that is, the n nonzero eigenvectors w̃i , i = 1, n, corresponding
to the n nonzero eigenvalues λi (ki ) �= 0, i = 1, n, obtained by (37) become n
solutions of the vectors w̃i satisfying (14). �
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Remark 3. In order to use Theorem 1, the reference signal x(t) contains nonzero
distinct contributions ai (ki ) from all source signals si (t). This is a similar con-
dition to that in [6], where |ai (k)| has only one maximum value with respect to
k ∈ Z . Moreover, the parameters L1 and L2 of the deconvolver W(z) should be
set to be L1 = −∞ and L2 = ∞ in theory. However, it is impossible; hence, in
practice we should approximate the infinite length to a finite length. In Section 4,
we shall choose a length L for this approximation.

Remark 4. From Theorem 1, it can be seen that by all the n eigenvectors corre-
sponding to the n nonzero eigenvalues λi (ki ), all source signals can be separated
from the output y(t). This is a novel result that has not been shown in the conven-
tional researches. Moreover, it can be seen from (40) that even if the fourth-order
cumulants γi have different signs for their values, the vector w̃i satisfying (14) can
be obtained. This fact will be confirmed by computer simulations in Section 4.

Remark 5. One can see that R̃−1B̃ whose size is nL × nL has nL nonzero
eigenvectors. Hence, it may be conjectured that an eigenvector except for the n
eigenvectors w̃i corresponding to the n nonzero eigenvalues λi (ki ) may be used
to recover a source signal.

3.2. Robust eigenvector algorithm

In the previous subsection, we assume that there is no noise in the output signals.
In this subsection, we shall show an EVA such that the solutions (14) can be
obtained, even if the noise n(t) satisfying the two assumptions, A4 and A5, is
presented in the output y(t). To this end, we introduce fourth-order cumulant
matrices of the m-vector random process {y(t)} [19], which constitute a set of
m × m block matrices F(4)

y, j,l , whose elements are defined by[
F(4)

y, j,l

]
[p,q]l1l2

= cum{yq(t − L1 − l2 + 1), y∗
p(t − L1 − l1 + 1),

y j (t − l), y∗
j (t − l)},

p, q, j = 1, m, l1, l2 = 1, L, l = L1, L2, (43)

where [·][p,q]l1l2
denotes the (l1, l2)th element of the (p, q)th block matrix of the

matrix F(4)
y, j,l . Then, we consider an m × m block matrix F̃ expressed by

F̃ =
m∑

j=1

L2∑
l=L1

F(4)
y, j,l . (44)

It is shown by a simple calculation that (44) becomes

F̃ = H̃HΨ̃H̃, (45)
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where Ψ̃ is the diagonal matrix defined by

Ψ̃ := block-diag{Ψ1,Ψ2, . . . ,Ψn}, (46)

Ψi := diag{. . . , γi ãi (−1), γi ãi (0), γi ãi (1), . . . }, i = 1, n, (47)

ãi (k) :=
m∑

j=1

L2∑
l=L1

|h ji (k − l)|2, i = 1, n, k ∈ Z . (48)

We note from assumption A1 that all ãi (k) are positive, if L1 = −∞ and L2 =
∞. As for (45), its derivation in the case of instantaneous mixtures is shown in
the Appendix of [8]. Its extension to the case of convolutive mixtures is straight-
forward; hence, its details are omitted.

Here, as a constraint, we take the following value:

|Dzi y | =
∣∣∣∣∣

m∑
j=1

L2∑
l=L1

cum{zi (t), z∗
i (t), y j (t − l), y∗

j (t − l)}
∣∣∣∣∣ = |wT

i F̃wi |

=
∣∣∣∣∣

n∑
j=1

γ j

∞∑
k=−∞

ã j (k) |gri (k)|2
∣∣∣∣∣ . (49)

Then, we consider solving the problem that the fourth-order cumulant |Dzi x | is
maximized under the condition of |Dzi y | = |γρi ãρi (k)|. Note that we may choose
an appropriate positive value for ãρi (k), if its true value is not available. By the
Lagrangian method, the following generalized eigenvector problem is derived
from the above problem:

B̃w̃i = λ̃F̃w̃i . (50)

From the following theorem, one can see that by solving the eigenvector prob-
lem of the matrix F̃−1B̃, its solution provides the vectors w̃i (i = 1, n) in (14). By
the same reasoning as used in Theorem 1, we confine ourselves to the case m = n

in the following theorem. Let the eigenvalues of the diagonal matrix Ψ̃
−1

Λ̃ be
denoted by

µi (k) := |ai (k)|2/ãi (k), i = 1, n, k ∈ Z . (51)

Theorem 2. Assume L1 = −∞ and L2 = ∞, and suppose the following three
conditions hold true:

(T2-1) There exist n integers ki ∈ Z such that the n eigenvalues µi (ki ) are
nonzero and distinct.

(T2-2) For each i = 1, n, µi (ki ) �= µi (k) for any k �= ki .
(T2-3) For each i = 1, n, µi (ki ) �= µ j (k) for any j �= i and k ∈ Z.

Then the n eigenvectors corresponding to n nonzero eigenvalues µi (ki ) of F̃−1B̃
become the vectors w̃i , i = 1, n, satisfying (14).

Remark 6. The preceding three conditions can be replaced by a stronger condi-
tion that all the eigenvalues µi (k) are distinct for i = 1, n and k ∈ Z .
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Proof. It can be seen from Appendix B and (45) that if m = n, the matrix F̃ is
positive definite. Therefore, based on (50), we consider the following eigenvector
problem:

F̃−1B̃w̃i = λ̃w̃i . (52)

By the similar method as used in (38) through (40), we obtain

Ψ̃
−1

Λ̃H̃w̃i = λ̃H̃w̃i . (53)

By using g̃i in (41), (53) becomes

Ψ̃
−1

Λ̃g̃i = λ̃g̃i . (54)

We should note that Ψ̃
−1

Λ̃ is a diagonal matrix with elements µi (k), i = 1, n
and k ∈ Z , and that its diagonal elements are the eigenvalues of F̃−1B̃. From the
three conditions T2-1, T2-2, and T2-3, therefore, the n nonzero eigenvectors g̃i �=
0, i = 1, n, corresponding to the n nonzero eigenvalues µi (ki ) �= 0, i = 1, n,
obtained by (54), that is, the n nonzero eigenvectors w̃i i = 1, n, corresponding
to the n nonzero eigenvalues µi (ki ) �= 0, i = 1, n, obtained by (52) become n
solutions of the vectors w̃i satisfying (14). �

Remark 7. The matrix F̃−1B̃ consists of only fourth-order cumulants; thus, the
eigenvectors derived from the matrix can be obtained with as little influence of
Gaussian noise as possible (referred to as a REVA). This means that if one can
estimate completely the same value as the theoretical one of F̃−1B̃, one can obtain
the same eigenvectors as if there were no noise in the output signal y(t). However,
in fact, as there are estimation errors of the fourth-order cumulants, from the
matrix F̃−1B̃, we cannot obtain eigenvectors that are not affected by Gaussian
noise (see Figure 3).

Remark 8. From the matrix Ψ̃
−1

Λ̃ in (53), it can be seen that the fourth-order
cumulants γi cancel each other in Ψ̃ and Λ̃. Therefore, the eigenvector algorithm
(52) can be applied to the case where the signs of the fourth-order cumulants γi

(i = 1, n) are different; that is, sub-Gaussian (the sign is minus (−)) and super-
Gaussian (the sign is plus (+)) signals are treated as source signals.

Remark 9. The proposed EVAs in (37) and (52) are both closely related to the
joint diagonalization of square matrices (e.g., [1], [3], [18]).

4. Computer simulations

To demonstrate the validity of the proposed method, many computer simulations
were conducted. Some results are shown in this section. The unknown system
H(z) was set to be an FIR channel with two inputs and two outputs, and we
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assumed that the length of the channel is three (K = 3), that is, the H(k)’s in (1)
were set to be

H(z) =
2∑

k=0

H(k)zk =
[

1.00 + 0.15z + 0.10z2 0.65 + 0.25z + 0.15z2

0.50 − 0.10z + 0.20z2 1.00 + 0.25z + 0.10z2

]
. (55)

Gaussian noise n j (t) with variance σ 2
n j

was included in the output y j (t) at various
signal-to-noise ratio (SNR) levels. The SNR was considered at the output of the
system H(z).

The matrix B̃ in (37) and (52) was calculated using a moving average defined
by

B̃(t) := β1B̃(t − 1) + (1 − β1){|x(t)|2V1(t)

−|x(t)|2Ṽ1(t) − x∗(t)ỹ∗(t)ṽT
1 (t) − x(t)ỹ∗(t)ṽT

2 (t)}, (56)

where V1(t) := ỹ∗(t)ỹT (t), Ṽ1(t) is a moving average of V1(t), calculated by

Ṽ1(t) = β2Ṽ1(t − 1) + (1 − β2)V1(t), (57)

and ṽi i = 1, 2 are moving averages of x(t)ỹ(t) and x∗(t)ỹ(t), respectively,
calculated by

ṽ1(t) := β2ṽ1(t − 1) + (1 − β2)x(t)ỹ(t), (58)

ṽ2(t) := β2ṽ2(t − 1) + (1 − β2)x∗(t)ỹ(t). (59)

Here ỹ(t) is defined by (27) and (28), where m in (28) was 2 and the parameters
L1 and L2 were set to be 0 and 9, respectively. Namely, the length L of the
deconvolver W(z) was L = 10. The matrix F̃ in (52) was calculated using a
moving average defined by

F̃(t) := β1F̃(t − 1) + (1 − β1){ ˝VV(t) − Ṽ1(t)ṼH
1 (t)

−Ṽ2(t)ṼH
2 (t) − tr{Ṽ1(t)}Ṽ1(t)}, (60)

where ṼV(t) is a moving average of V1(t)VH
1 (t) defined by

ṼV(t) = β1ṼV(t − 1) + (1 − β1)V1(t)VH
1 (t), (61)

the matrix Ṽ2(t) was calculated by

Ṽ2(t) = β2Ṽ2(t − 1) + (1 − β2)ỹ(t)ỹT (t), (62)

and tr{X} denotes the trace of the matrix X . As for the recurrence formula (60) of
F̃(t), its derivation in the case of instantaneous mixtures is shown in Appendix B
of [12]. Its extension to the case of convolutive mixtures is straightforward, and
so its details are omitted. The matrix R̃ was estimated by Ṽ1(t) in (57), where in
the following Examples 2 and 3, instead of β2 in (57), the parameter β1 in (56)
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Figure 2. The source signals si (t) ((a) and (b)), the channel outputs y j (t) ((c) and (d)), and the
separated signals ((e) and (f), and (g) and (h)) obtained by the EVA and the REVA, respectively.

was used. Note that we have not yet obtained the selection rule for the parameters
β1 and β2, but the values of the parameters are basically decided by the following
rule: 1 > β1 > β2 > 0. The L-column vectors f j , j = 1, 2 in (23) were set to be
f1 = [0, 1, 0, . . . , 0]T , f2 = [0, . . . , 0]T , that is, x(t) = y1(t − 1). Note that there
are many ways of selecting for the reference filter f (z); the above filter provided
the best performance from the simulations. As a measure of performance, we used
the multichannel intersymbol interference (MISI) [5], [8]. The value of MISI in the
logarithmic (dB) scale becomes −∞, if the g̃i ’s in (14) are obtained, and hence
a negative large value of MISI indicates proximity to the desired solution. When
the MISI was calculated, the n eigenvectors of R̃−1B̃ and F̃−1B̃ were chosen such
that the MISI took as small values as possible.

Example 1. In this example, using a 4-quadrature amplitude modulation (QAM)
and an 8-QAM as two source signals s1(t) and s2(t), we shall show that the
proposed EVAs work well. The parameters β1 in (56), (60), (61) and β2 in (57)–
(59), (62) were set to be β1 = 0.99999 and β2 = 0.999, respectively, with β2 in
(57) used by the EVA set to be 0.9995.
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Figure 2 shows the source signals, the channel signals y j (t) j = 1, 2, and the
separated signals obtained by the proposed EVA and REVA, where the SNR is
30 dB. The results were obtained by 10 iterations. That is, in each iteration, the
estimations (56) through (62) were implemented by using 5,000 data samples,
then, using the estimations, the eigenvectors of R̃−1B̃ and F̃−1B̃ were calculated.
As the initial values of the estimations, the estimations obtained by previous
iteration were used, and their initial values at the first iteration were given ap-
propriately. From Figure 2, one can see that the proposed EVAs can achieve the
BD successfully.

Example 2. In this example, the source signals s1(t) and s2(t) were a sub-
Gaussian signal and a super-Gaussian signal, where the sub-Gaussian signal takes
one of two values, −1 and 1 with equal probability 1/2 and the super-Gaussian
signal takes −2, 2, and 0 with probabilities 1/8, 1/8, and 6/8, respectively.
The parameters β1 in (56), (60), (61) and β2 in (57)–(59), (62) were set to be
β1 = 0.999995 and β2 = 0.9995, respectively.

Figure 3 shows the results of performances for the proposed EVA and REVA
when the SNR levels were respectively taken to be 10, 15, 20, 25, and 30 dB. The
vertical and horizontal axes represent respectively MISI and SNR, where each
MISI shown in Figure 3 was the average of the performance results obtained by
30 independent Monte Carlo runs. In each Monte Carlo run, the final eigenvectors
of R̃−1B̃ and F̃−1B̃ were obtained by 10 iterative calculations, where in each
iteration, F̃, R̃, and B̃ were estimated by data samples in the following three cases:
(Case 1) 5,000 samples, (Case 2) 10,000 samples, and (Case 3) 20,000 samples,
and as their initial values, the estimated values obtained by the previous iteration
were used, where the first iteration started with zeros. Note that a stopping rule of
the iterative calculation for obtaining the final eigenvectors has not been obtained
yet, but ten iterative calculations are enough to obtain the final eigenvectors.

It can be seen from Figure 3 that when the SNR level is more than about 20 dB,
the EVA can provide better performances than the REVA; hence, the EVA may
be more useful than the REVA at those SNR levels. On the other hand, the REVA
is effective when the SNR level is less than about 20 dB, because as the number
of data samples increases, the differences in performance between the REVA and
the EVA become bigger. However, in the lower SNR case, that is, for less than
15 dB, the difference between the two performances of the REVA in Case 2 and
Case 3 is small. Note that if the parameters β1 in (61) and β2 are changed, the
performance of Case 3 becomes better than that of Case 2 (see the dashed lines in
Figure 3), where we changed β2 = 0.9995 to β2 = 0.999 and the parameter β1
in (61) was changed to β2 (= 0.999). Therefore, in the lower SNR case (in Case
2, less than about 10 dB and in Case 3, less than about 15 dB), if the number of
data samples used in the estimations is allowed to be large, we recommend that
the parameter β1 in (61) be changed to β2 and that β2 be changed appropriately.
As for the sample size needed to estimate F̃, R̃, and B̃, we consider that at least
more than 5,000 data samples are needed.
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Figure 3. The performances of the REVA and the EVA with varying SNR levels for 5,000 samples
(Case 1), 10,000 samples (Case 2), and 20,000 samples (Case 3).

Example 3. Finally, we shall show some results compared with the super-
exponential method (SEM) (e.g., [5], [14], [17]) and the robust super-exponential
method (RSEM) [8], [13], Those methods need deflation methods in order to
separate source signals from their mixtures, and the RSEM has the same ability
as the REVA. Our proposed EVAs can separate all source signals without the
deflation method: This is one of their novel points. Therefore, we want to show
some differences between the EVAs without the deflation method and the SEMs
with it, in which the results are obtained by varying SNR levels.

As two methods compared with the EVA and the REVA, the SEM in [5] and
the RSEM in [13] were used. As a deflation method, the one in [5] was used. The
source signals used in the example were the sub-Gaussian and the super-Gaussian
used in Example 2. The parameters of the estimations needed to implement the
SEMs were chosen so that the SEMs gave the best performances.

Figure 4 shows the performance results. The horizontal and vertical axes rep-
resent the SNR levels (5 through 40 dB) and the values of MISI, where each
MISI was the average of the results obtained by 30 independent Monte Carlo
runs. In each Monte Carlo run, 10 iterations were implemented, and for each
iteration, the estimations were implemented by using 5,000 data samples; then,
using the estimations, the EVAs and SEMs were calculated iteratively. As shown
in Figure 4, the proposed EVAs provide better performances than the SEMs. Note
that, as the SNR level decreases, this tendency becomes remarkable. One of the
reasons may be that the deflation method of the SEMs often fails to separate two
source signals. However, we confirm that if the deflation method can be used
successfully, the performances of the SEMs are similar to those of the EVAs.

Here, we show the computational complexities of the EVAs and SEMs using
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Figure 4. The comparison results of EVA, REVA, SEM, and RSEM with varying SNR levels.

Table 1. The flops and elapsed time of the EVAs and SEMs for one iteration for 5,000
samples

Method Flops (log10FLO) Time (sec.)

REVA 7.67 0.70
EVA 7.05 0.65

RSEM 7.89 0.91
SEM 6.95 0.82

the Flops (floating-point operation with MATLAB Ver. 5.2) defined in the log-
arithmic scale and the elapsed time for one iteration for 5,000 samples. Table 1
shows these results. The values of the elapsed time pertain to a Pentium 4, CPU
3.6GHz, 2GB RAM machine.

From all the results, we conclude that the proposed EVAs can work well for
achieving the BD. In particular, the REVA shows better performances when the
SNR level is less than about 20 dB, and when the SNR level is more than 20 dB,
the EVA should be used to solve the BD problem. However, the SEMs can be
used to solve the BD problem, if deflation methods work well. Finally, the com-
putational complexity of the EVAs is almost the same as that of the SEMs.
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5. Conclusions

We have proposed two types of EVA for solving the BD problem. By using
reference signals, these EVAs are capable of separating source signals simulta-
neously from their mixtures. One of the EVAs is robust against Gaussian noise,
which means that the EVA can be used to estimate the inverse of H̃ with as little
influence of Gaussian noise as possible. Computer simulations have demonstrated
the effectiveness of the proposed EVAs.

The following problems have not been solved yet:

(i) How to select n eigenvectors corresponding to the eigenvalues (36) or (51)
from the nL eigenvectors of R̃−1B̃ or F̃−1B̃.

(ii) The case of m > n.
(iii) The case of FIR channels.

As for (i), we do not have yet a complete scheme for selecting appropriate n
eigenvectors from the nL eigenvectors of R̃−1B̃ or F̃−1B̃. However, we note that
the condition stated in Remark 2 (or Remark 6) holds true except for pathological
cases. Then, under the assumptions of m = n, L1 = −∞, and L2 = ∞, H̃ can
be estimated from the matrix W̃ = [w̃1, . . . , w̃nL ], that is, H̃ � W̃−1 with W̃
having the columns in correct order. If W̃ has the columns in correct order, then
it has the same structure as shown in (85) and (86). However, we have not yet
found a correct scheme for attaining the objective. As for (ii), in the case of m >

n, the matrices F̃†B̃ and R̃†B̃ are not full rank, that is, their ranks are nL (< mL)
[11]. We can conclude that the remaining (m − n)L eigenvalues become zero. As
for (iii), we have shown some results using computer simulations (see Section 4)
in which the BD can be achieved by the proposed methods, but we have not yet
obtained theoretical evidence to support the results. In the near future, we will
find the solutions to these problems.

Appendix A. The proof for deriving (31)

From (27), we obtain

ỹ(t) = H̃T s̃(t), (63)

where s̃(t) is the column vector defined by

s̃(t) :=
[
sT

1 (t), sT
2 (t), . . . , sT

n (t)
]T

, (64)

s j (t) := [
. . . , s j (t + 1), s j (t), s j (t − 1), . . .

]T
, j = 1, n. (65)

From (19), x(t) = ãs̃(t). Then, the block matrix B̃ can be expressed as

B̃ = E[ỹ∗(t)ỹT (t)x∗(t)x(t)] − E[ỹ∗(t)ỹT (t)]E[x∗(t)x(t)]
−E[ỹ∗(t)x∗(t)]E[ỹT (t)x(t)] − E[ỹ∗(t)x(t)]E[ỹT (t)x∗(t)]. (66)
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From the assumption A2, we obtain

E[ỹ∗(t)ỹT (t)x∗(t)x(t)] = H̃HΛ1H̃, E[ỹ∗(t)ỹT (t)]E[x∗(t)x(t)] = H̃HΛ2H̃,

E[ỹ∗(t)x∗(t)]E[ỹT (t)x(t)] = H̃HΛ3H̃, E[ỹ∗(t)x(t)]E[ỹT (t)x∗(t)] = H̃HΛ2H̃.

(67)

Here Λi (i = 1, 2, 3) are diagonal matrices whose kth diagonal elements are
|ai (k)|2 E[|si (t −k)|4], |ai (k)|2 E[|si (t −k)|2]2, and |ai (k)|2 E[s∗

i (t −k)2]E[si (t −
k)2], respectively, i = 1, n, k = −∞, ∞. Therefore, from (66) and (67), we can
find B̃ = H̃H Λ̃H̃, where Λ̃ := Λ1 − 2Λ2 − Λ3.

Appendix B. Proof of the positive definiteness of the
covariance matrix R̃

Let R̃ be defined by E[ỹ∗(t)ỹT (t)], using ỹ(t) ∈ CnL in (27) and yi (t) ∈ CL ,
i = 1, n in (28). Then it can be easily shown that R̃ is positive semidefinite. Let

ȳ(t) :=
[
ẏT (t − L1), ẏT (t − L1 − 1), . . . , ẏT (t − L2)

]T ∈ CnL , (68)

ẏ(t − l) := [
y1(t − l), y2(t − l), . . . , yn(t − l)

]T ∈ Cn, l = L1, L2. (69)

Then there exists a permutation matrix P ∈ CnL×nL such that ȳ(t) = Pỹ(t). Let
R̄ := E[ȳ∗(t)ȳT (t)], then we have

R̄ = PR̃PT . (70)

It is clear that R̃ is positive definite if and only if R̄ is positive definite.
Now suppose

ζ̄
H

R̄ζ̄ = 0, (71)

where

ζ̄ :=
[
ζT

L1
, ζT

L1+1, . . . , ζ
T
L2

]T ∈ CnL , (72)

ζl := [ζl1, ζl2, . . . , ζln]T ∈ Cn, l = L1, L2. (73)

Since ẏ(t − L1) = ∑∞
k=−∞ H(k)s(t − L1 − k) = ∑∞

k=−∞ H(k−L1)s(t − k), we
have

R̄ = E[ȳ∗(t)ȳT (t)]

=
∞∑

k=−∞




H(k−L1)

...

H(k−L2)




∗

Σσ




H(k−L1)

...

H(k−L2)




T

, (74)
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where Σσ := diag{σ 2
s1

, σ 2
s2

, . . . , σ 2
sn

} whose diagonal elements are real values.
Therefore, it follows from (71) and (74) that

ζ̄
H

R̄ζ̄ =
∞∑

k=−∞
ζ̄

H




H(k−L1)

...

H(k−L2)




∗

Σσ




H(k−L1)

...

H(k−L2)




T

ζ̄ = 0. (75)

Hence from (75), we have

ζ̄
T




H(k−L1)

...

H(k−L2)


Σ

1
2
σ = 0, k ∈ Z , (76)

which means

ζ̄
T




H(k−L1)

...

H(k−L2)


 = 0, k ∈ Z , (77)

because Σ
1
2
σ > 0, where Σ

1
2
σ = diag{σs1 , σs2 , . . . , σsn }. It follows from (72) and

(76) that

[ζT
L1

, ζT
L1+1, . . . ζ

T
L2

]




H(k−L1)

H(k−L1−1)

...

H(k−L2)


 zk = 0 for z ∈ C, k ∈ Z , (78)

which implies

∞∑
k=−∞

L2∑
l=L1

ζT
l zlH(k)zk = 0 for z ∈ C, (79)

which is equivalent to

ζT (z)H(z) = 0 for z ∈ C, (80)

where ζ(z) := ζL1
zL1 + ζL1+1zL1+1 + · · · + ζL2

zL2 ∈ Cn . Because H(z) has
full rank on the unit circle |z| = 1, from (80), we have ζ(z) = 0 on the unit circle.
This is equivalent to ζ(z) = 0 for any z ∈ C . Therefore, we have ζi = 0 for
i = L1, L2. Hence, ζ̄ = 0, and then we get Ker R̄ = {0}, where the symbol Ker R̄
denotes the kernel of matrix R̄.



KAWAMOTO, KOHNO, AND INOUYE

Appendix C. Existence of the inverse of H̃, where
L1 = −∞, L2 = ∞

Let

ỹ := H̃T s̃, (81)

where

ỹ := [yT
1 , yT

2 , . . . , yT
n ]T ,

yi := [. . . , yi (−1), yi (0), yi (1), . . . ]T , i = 1, n,

s̃ := [sT
1 , sT

2 , . . . , sT
n ]T ,

si := [. . . , si (−1), si (0), si (1), . . . ]T , i = 1, n.

In the time domain, (81) is equivalent to (1). Furthermore, applying Wiener’s
inversion theorem [4] to H(z), the assumption A1 ensures the existence of its
stable inverse H−1(z).

Here, we may write (1) as

y(t) = H(z)s(t), (82)

and then putting W(z) = H−1(z), we have from (82)

W(z)y(t) =
∞∑

k=−∞
W(k)y(t − k) = s(t), (83)

where the second equality comes from

∞∑
τ=−∞

W(τ )H(k−τ) = δ(k)I. (84)

Let

W̃ :=




W11 W12 · · · W1n

W21 W22 · · · W2n
...

...
...

...

Wn1 Wn2 · · · Wnn


 , (85)

[
Wi j

]
lr := w j i (l − r), l ∈ Z , r ∈ Z . (86)

Then (83) is equivalent to

W̃T ỹ = s̃. (87)

(81) and (87) mean W̃T H̃T = I and H̃T W̃T = I. Therefore, the inverse of H̃T

exists.
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