流れ画像に対するブラインド信号処理

* 米子高専 専攻科 ** 米子高専

Blind Signal Processing for a Blurred Image

Suguru Noguchi * , Shinsuke Nishimura* and Kiyotaka Kohno** *Advanced Course Yonago, National College of Technology **Yonago National College of Technology

In this paper, we propose a blind restoration method using the parameter estimation of MA model for a blurred image and present that the proposed method is effective by computer simulation.

はじめに 1.

ブラインド信号分離 (Blind Signal Separation) 技術は、いくつかの信号源からの信号が混信して いるとき,原信号は観測できない(すなわちブラ インドである)が、観測できる混信信号より信号成 分を抽出して復元する信号処理技術の1つであり 近年,移動体通信や音声・音響信号処理や脳科学 の分野で活発に研究されている

本論文は,水平方向のみのブレによる劣化を受 けた流れ画像のブラインド復元に対して,非ガウス 線形過程のMAモデル (Moving Average Model: 移動平均モデル) のパラメータ推定を用いる方法を 提案するとともに、提案した方法の有効性をコン ピュータシミュレーションにより検証する.

2. 画像復元モデル

本論文では,画像は離散画像,すなわち,離散的 な有限個の値の組(ベクトル)で表されるものとす る . 今 , 連続画像上の N個の標本点 x_0,x_1,\cdots,x_{N-1} の値 $f\left(x_0\right)$, $f\left(x_1\right)$, \cdots , $f\left(x_{N-1}\right)$ を並べてできる ベクトル $\left[f\left(x_{0}
ight),f\left(x_{1}
ight),\cdots,f\left(x_{N-1}
ight)
ight]^{T}$ を標本デー タと呼び f(x) で表す $^{(1)}$.

本論文では, Fig. 1 に示すような画像復元モデ ルを考える . Fig. $\tilde{1}$ に示すように , 原画像を f(x) , 観測される劣化画像を $oldsymbol{g}(x)$, 劣化を取り除いて復 元した画像を $f_1(x)$ で表すものとする.ブライン ド復元とは原画像 f(x) と劣化要因 H(z) が未知で ある時,観測される劣化画像g(x)のみから復元画 像 $f_1(x)$ を得ようというものである.

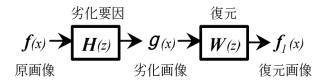


Fig.1 Image restoration model

原画像 f(x) と観測系との相対的な運動により劣 化 (ブレ) した画像 g(x) を流れ画像という.原画 像は 256×256 画素, 8 ビット(モノクロ)からな るものとする .2 次元に配列された画素の水平方向 (行方向)の256個を順につなげて構成される1次 元ベクトルの座標をxとした時,水平方向のみの ブレを次のように表す.

$$g(x) = \frac{1}{K} \sum_{i=0}^{K-1} f(x-i) , \quad 0 \le x < 65536$$
 (1)

ただし, x - i < 0 のとき f(x - i) = 0 とする.

本論文ではこのような水平方向のみのブレによっ て劣化を受けた画像のブラインド復元問題を考え る.なお,劣化画像g(x)にはノイズは付加されて いないものとする.

MAモデルのパラメータ推定を用い た画像復元

次のような1入力1出力の非ガウス線形システ ムを考える.

$$g(x) = \sum_{i=0}^{\infty} h(i)f(x-i)$$
 (2)

ここで f(x) は入力 , g(x) は出力で , h(i) はインパ ルス応答である

線形システムの伝達関数 H(z) は次式で表される.

$$\boldsymbol{H}(z) = \sum_{i=-\infty}^{\infty} h(i)z^{-i}, \tag{3}$$

(2) のような入力過程 f(x) が白色で,線形シス テムの伝達関数が有理関数で表されるモデルはM Aモデル (Moving-Average Model:移動平均モデ ル)と呼ばれる $^{2)}$.MAモデルのパラメータh(i)は,出力過程g(x)の3次キュムラントで表すこと ができ,以下のような Giannakis の公式で推定す ることができる³⁾.

$$h(j) = \frac{c_3(q,j)}{c_3(q,0)}h(0), \quad j = 0, 1, \dots, q \quad (4)$$

$$h(0) = c_3(q,0) \frac{\{c_3(0,0)\}^{\frac{1}{3}}}{\left\{\sum_{j=0}^q c_3(q,j)\right\}^{\frac{1}{3}}}$$
 (5)

ここで q はM A モデルの次数 , c_3 (a,b) は出力 g(a) , g(b), g(0) の 3 次キュムラントである.

本論文で扱う画像は人工的なものであり非ガウ ス性が高いと仮定すると , (1) と (2) から分かるよ うに,本論文で扱う流れ画像は次数 q=K-1,イ ンパルス応答 $h(i) = \frac{1}{\mathcal{K}}$ のMAモデルと考えるこ

従って, $h(0),h(1),\cdots,h(K-1)$ を推定するこ とができれば逆システム W(z)

$$W(z) = \sum_{i=-\infty}^{\infty} w(i)z^{-i} \simeq \sum_{i=0}^{K-1} w(i)z^{-i}$$
 (6)

を決定することができ,劣化画像 g(x) と逆システ ム W(z) より復元画像 $f_1(x)$ は次のように得るこ とができる.

$$f_1(x) = \sum_{i=0}^{K-1} w(i)g(x-i)$$
 (7)

ただし,w(i) は逆システム $\boldsymbol{W}(z)$ のインパルス応答である.

4. シミュレーション結果

Fig. 2 に示すような原画像 f(x) に対して , K=16 のブレを生じさせた場合のシミュレーションを行った .

MAモデルの入力過程の平均値は0でなければならないが,画像の場合,各画素の値は非負である.そこで,原画像の画素値の平均が0になるように調整し,復元後,非負に戻すことにした.

復元の評価尺度として,2 つの画像 $\alpha(x)$ および $\beta(x)$ の相互相関係数 $R_{\alpha\beta}$ を次のように定義した.

$$R_{\alpha\beta} = \frac{\sum_{x=0}^{65535} \alpha(x)\beta(x)}{\|\boldsymbol{\alpha}(x)\| \|\boldsymbol{\beta}(x)\|}$$
(8)

ここで ||・|| はノルムを表す.

K=16 の場合の劣化画像を Fig. 3 に示す $h(0)=h(1)=\cdots=h(15)=\frac{1}{16}$ として逆システム W(z) を生成し,復元画像 $f_1(x)$ を求めると,完全に復元することができ, $R_{ff1}=1$ を得た.次に (4) ,(5) 式を用いて $h(0)\sim h(15)$ を推定

次に (4) , (5) 式を用11て h(0) ~ h(15) を推定し,得られた逆システムで復元した画像を Fig. 4 に示す.また,その時の相互相関係数を Table 1 に示す.

 ${
m Fig.}~4$ より,復元は十分になされており, ${
m Table}~1$ より R_{ff_1} が R_{fg} よりも良くなっていることがわかる.

Table 1 Cross correlation coefficient

R_{fg}	R_{ff_1}
0.9132	0.9413

Fig.2 Source Image

5. まとめ

水平方向のみの流れ画像のブラインド復元に対して,MAモデルのパラメータ推定による方法が

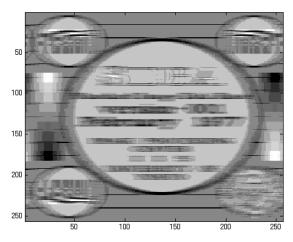


Fig.3 Degraded Image

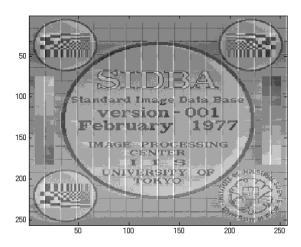


Fig.4 Restoration Image

有効であることが分かった.今後の課題としては 垂直方向のブレへの対応,多入出力MAモデルへ の対応,非負信号問題への対応が挙げられる.

謝辞

本研究を進めるにあたり,ご指導とご助言をいただいた島根大学総合理工学部 井上雄二郎教授に感謝の意を表します.

参考文献

- 1) 中村伸隆 , 小川英光 , 加法性ノイズを考慮した 最適画像復元 , 電子通信学会論文誌 , Vol.J67-D , No.5 , pp.563-570 , 1984 .
- 2) 井上雄二郎 , 高次統計量キュムラントによる 信号処理 - , "システム/制御/情報 , Vol.36 , No.2 , pp.90-99 . 1992 .
- 3) 井上雄二郎 , 高次統計量キュムラントによる 信号処理 - , "システム/制御/情報 , Vol.36 , No.5 , pp.294-306 . 1992 .