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Eigenvector Algorithms Incorporated With
Reference Systems for Solving Blind Deconvolution

of MIMO-IIR Linear Systems
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Abstract—This letter presents an eigenvector algorithm (EVA)
for blind deconvolution (BD) of multiple-input multiple-output in-
finite impulse response (MIMO-IIR) channels (convolutive mix-
tures), using the idea of reference signals. Differently from the con-
ventional researches on EVAs, the proposed EVA utilizes only one
reference signal for recovering all the source signals simultane-
ously. Computer simulations are presented for demonstrating the
effectiveness of the proposed algorithm.

Index Terms—Blind deconvolution, blind signal processing,
eigenvector algorithms, multiple-input multiple-output infinite
impulse response (MIMO-IIR) channels, reference systems.

I. INTRODUCTION

I N this letter, we deal with a blind deconvolution (BD)
problem for a multiple-input and multiple-output (MIMO)

infinite-impulse response (IIR) channels. To solve this problem,
we use eigenvector algorithms (EVAs) [6], [13]. The first
proposal of the EVA was done by Jelonnek et al. [6]. They
have proposed the EVA for solving blind equalization (BE)
problems of single-input single-output (SISO) channels or
single-input multiple-output (SIMO) channels. In [4], [9], and
[13], several procedures for the blind source separation (BSS)
of instantaneous mixtures, using the generalized eigenvalue
decomposition, have been introduced. Recently, the authors
have proposed an EVA that can solve the BSS problems in the
case of MIMO instantaneous mixtures [7].

The EVA in [7] was derived by using reference signals. Re-
searches using the idea of reference signals to solve blind signal
processing (BSP) problems, such as the BD, the BE, the BSS,
and so on, to our best of our knowledge, have been made by
Jelonnek et al. (e.g., [6]), Adib et al. (e.g., [1]), Rhioui [14],
and Castella [3]. Jelonnek et al. have shown in the single-input
case that by the Lagrangian method, the maximization of a con-
trast function leads to a closed-form expressed as a generalized
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eigenvector problem, which is referred to as an eigenvector al-
gorithm (EVA). Adib et al. have shown that the BSS for instanta-
neous mixtures can be achieved by maximizing a contrast func-
tion, but they have not proposed any algorithm for achieving
this idea. Rhioui et al. [14] and Castella et al. [3] have proposed
quadratic MIMO contrast functions for the BSS with convo-
lutive mixtures, and they have proposed an algorithm for ex-
tracting one source signal using a “fixed point”-like method.
However, they have not presented a theoretical proof for the
convergence of their proposed algorithm. In order to recover all
source signals, in [14], the reference signals corresponding to
the number of source signals that can be extracted were used,
and in [3], a deflation approach was used, in which for each de-
flation, a different reference signal was used.

In this letter, it will be shown how the EVA derived by using
reference signals works for the BD of the MIMO-IIR channels
(see Theorem 1). From the analysis, one can see that the pro-
posed EVA works such that all source signals can be recovered
using only one reference signal. This is a novel major result in
this letter. Simulation results are presented to show the effec-
tiveness of the proposed EVA.

This letter uses the following notation: Let denote the set
of all integers. Let denote the set of all complex numbers. Let

denote the set of all -column vectors with complex com-
ponents. Let denote the set of all matrices with
complex components. The superscripts , and dag denote,
respectively, the transpose, the complex conjugate, the complex
conjugate transpose (Hermitian), and the pseudo-inverse oper-
ation of a matrix. The symbols block-diag and diag
denote, respectively, a block diagonal and a diagonal matrices
with the block diagonal and the diagonal elements . The
symbol cum denotes a fourth-order cumulant of

’s. Let stands for .

II. PROBLEM FORMULATION AND ASSUMPTIONS

We consider a MIMO channel with inputs and outputs
as described by

(1)

where is an -column vector of input (or source) signals,
is an -column vector of channel outputs, is an

-column vector of Gaussian noises, and is an
impulse response matrix sequence. The transfer function of the
channel is defined by = .

To recover the source signals, we process the output signals
by an deconvolver (or equalizer) described by
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, where is the impulse response
matrix sequence of , which is defined by

. The cascade connection of
the unknown system and the deconvolver is illustrated in [8,
Fig. 1]. The assumptions on the channel, the source signal, the
deconvolver, and the noise are as follows.

1) The transfer function is stable and has full column
rank on the unit circle , where the assumption 1)
implies that the unknown system has less inputs than out-
puts, i.e., , and there exists a left stable inverse of the
unknown system.

2) The input sequence is a complex, zero-mean, and
non-Gaussian random vector process with element pro-
cesses being mutually independent. Each
element process is an i.i.d. process with a variance

and a nonzero fourth-order cumulant de-
fined as .

3) The deconvolver is an FIR channel of sufficient
length so that the truncation effect can be ignored. We
define .

4) The noise sequence is a zero-mean, Gaussian
vector stationary process whose component processes

have nonzero variances .
5) The two vector sequences and are mutually

statistically independent.
Under 3), the impulse response of the cas-

cade system can be written in a vector form as
, where is the column vector con-

sisting of the th output impulse response of the cas-
cade system defined by

, where is
the th element of matrix , and is the -column
vector consisting of the tap coefficients (corresponding to
the th output) of the deconvolver defined as in [8], and

is the block matrix whose th block ele-
ment is the matrix (of columns and possibly infinite
number of rows) with the th element defined by

, where
is the th element of the matrix .

In the multichannel blind deconvolution problem, we want to
adjust ’s so that

(2)

where is an permutation matrix, and is the -block
column vector defined by ,

, for , otherwise .
Here, is the column vector (of infinite elements) whose th

element is given by , where is the
Kronecker delta function, is a complex number standing for
a scale change and a phase shift, and is an integer standing
for a time shift.

III. EIGENVECTOR ALGORITHMS (EVAS)

In this section, we assume that there is no noise in the
output , and then, we analyze eigenvector algorithms for the
MIMO channel (1). We should note that the noise in the
output is taken into account in computer simulations (see
Section IV).

A. Analysis of Eigenvector Algorithms With Reference Signals
for MIMO-IIR Channels

In order to solve the BD problem, the following cross-cumu-
lant between and a reference signal , which is also
utilized in [3], is defined as follows:

(3)

where is the th element of that is the output
of the deconvolver, and the reference signal is given
by , using an appropriate filter (see [8,
Fig. 1]). The filter is called a reference system.
Note that the input of the reference system is . Let

, and then,
. The element of

the filter is defined as , and the
reference system is an -column vector whose elements
are .

Jelonnek et al. [6] have shown in the single-input case that
by the Lagrangian method, the maximization of under

leads to a closed-form expressed as a general-
ized eigenvector problem, where and denote the vari-
ances of the output and a source signal , respec-
tively, and is one of integers such that the set

is a permutation of the set . In our
case, and can be expressed in terms of the vector
as, respectively, and , where

is the block matrix whose th block element
is the matrix with the th element calculated by cum

,
and is the covariance matrix of -block
column vector defined by

(4)

where
. Therefore, by the similar way as in [6], the max-

imization of under leads to the following
generalized eigenvector problem:

(5)

Moreover, Jelonnek et al. have shown in [6] that the eigenvector
corresponding to the maximum magnitude eigenvalue of
becomes the solution of the blind equalization problem, which is
referred to as an EVA. Note that since Jelonnek et al. have dealt
with SISO-IIR channels or SIMO-IIR channels, the construc-
tions of and in (5) are different from those proposed in
[6]. In this letter, under the assumption that any reference system

is used, we want to show how the eigenvector algorithm (5)
works for the BD of the MIMO-IIR channel (1). To this end, we
use the following equalities:

(6)

where is the block diagonal matrix defined
by block-diag

, and
is the block diagonal matrix defined by

block-diag
.

Since both and become diagonal, (6) shows that the two
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matrices and are simultaneously diagonalizable. Here, let
the eigenvalues of the diagonal matrix be denoted as

. We put the following
assumption on the eigenvalues : 6) All the eigenvalues

are distinct for and .
Theorem 1: Suppose the noise term is absent and the

length of the deconvolver is infinite (that is, and
). Then, under the assumptions 1) through 6), the

eigenvector ’s corresponding to the nonzero eigenvalues
of matrix for and an arbitrary

become the vectors ’s satisfying (2).
Outline of the Proof: Based on (5), we consider the fol-

lowing eigenvector problem:

(7)

Then, from (6), (7) becomes

(8)

Under and , we have the following equa-
tions:

(9)

which are shown in [12] along with their proofs. Then, it follows
the following form from (8):

(10)

Multiplying (10) by from the left side and using (9), (10)
becomes

(11)

is a diagonal matrix with diagonal elements
and , and thus, (7) and (11) show that its diagonal

elements are eigenvalues of matrix . Here we use
the following fact: , which is shown
in [10] and whose proof is found in [5]. Using this fact, the other
remaining eigenvalues of are all equal to zero. From the as-
sumption 6), the nonzero eigenvalues , ob-
tained by (11), that is, the nonzero eigenvectors ,
corresponding to nonzero eigenvalues ,
obtained by (7) become solutions of the vectors satisfying
(2).

Remark 1: When the length of the deconvolver is finite,
the size of the matrix is , but its rank is asymp-
totically equal to as . Therefore, it follows from
the assumption 6) that there exist nonzero eigenvalues of

that are approximately equal to the nonzero eigenvalues
of the matrix and eigenvalues

of that are approximately equal to zero.
Remark 2: The proposed EVA is closely related to the joint

diagonalization of square matrices (e.g., [2]).

B. How to Choose the Eigenvectors

From Remark 1, we have a problem of how the eigenvectors
corresponding to , satisfying (2), can be chosen from
all eigenvectors of . In this subsection, a solution of the
problem will be shown. To this end, we consider the following
eigenvector problem:

(12)

where the structure of is the same as the one of , but the el-
ements of are different from the ones of . The eigenvalues

’s of correspond to ’s of , because the eigenvec-
tors obtained from (12) are the left eigenvectors of , cor-
responding to ’s. Moreover, the conjugately transposed vec-
tors of the eigenvectors obtained from (12) correspond (or are
equal) to the row vectors of up to constants. The proof of the
mentioned above is given below: Substituting (6) into (12), we
obtain

(13)

By the similar way to (10), (13) becomes

(14)

Multiplying (14) by from the left side,(14) becomes

(15)

Let , and then, (15) becomes .
This means that since is a diagonal matrix, the elements
of are zero, except for one element. On the other hand, mul-

tiplying by from the left side, we have

(16)

We obtain from (13) that belongs to the range of . This
fact means that there exists a vector such that .

Since ,(16) gives

, which implies .
This shows along with the fact that all the elements of are
zero, except for one element, that the conjugately transposed
vector of becomes a row vector of up to a constant. This
completes the proof.

It can be seen from the definition of the block element
[see it stated above (2)] that is a matrix (of columns and
possibly infinite number of rows) having a special Toeplitz (or
constant-along-diagonals) structure. Therefore, the (cross) cor-
relation of a pair of rows of (by shifting their elements left
or right appropriately) is the same for all pairs of rows of
if is infinite. In practice, however, the length of the equal-
izer and the length of the channel, which is denoted by , are
finite, and so is a matrix of columns and
rows, that is, . In this case, pairs of rows
of have approximately the similar correlations for all pairs
of rows of if is sufficiently large. According to Remark 1
and the above discussion, we consider nonzero eigenvalues
and approximately-zero eigenvalues of the matrix

, and we can classify approximately eigenvectors in
(7) corresponding to nonzero eigenvalues into sets of
eigenvectors whose pairs have almost the same correlations for
all pairs of eigenvectors of each set. There remain
eigenvectors corresponding to the remaining eigen-
values that are approximately zero. Thus, we propose a tentative
procedure of finding eigenvectors satisfying (2) as follows.

1) Set (where denotes the number of iterations
from the beginning less than ).

2) Calculate the eigenvectors of and the
eigenvectors of . Then, select and

corresponding to the maximum magnitude eigenvalue
among ’s for (where
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we should note for in
theory).

3) Calculate the magnitudes of the correlations of all the pairs
of and for . Then, select the

th largest magnitude correlation of all the
magnitude correlations calculated in 2.

4) Remove eigenvalues ’s corresponding to the mag-
nitude correlations larger than or equal to the th largest
magnitude one selected in 3). Then save the (
remaining eigenvalues ’s for finding other eigenvectors
satisfying (2).

5) Put and stock the obtained in 2). If
, stop the iterations; otherwise, go to 2).

Therefore, the eigenvectors ’s stocked in step 5) are the
solutions in (2)

IV. COMPUTER SIMULATIONS

To demonstrate the validity of the proposed method, many
computer simulations were conducted. Some results are shown
in this section. The unknown system was set to be an FIR
channel (see [8]). The parameters and in were set
to be 0 and 11, respectively. As a measure of performances,
we used the multichannel inter-symbol interference
[11]. For comparison, the algorithm proposed by Castella et al.
(CRMPA) was used [3]. Fig. 1 shows the performance results
obtained by our EVA (black lines) and the CRMPA (gray lines),
when the SNR levels were, respectively, taken to be 5 through
40 dB for every 5 dB, where each M shown in Fig. 1 was
the average of the performances obtained by 50 independent
Monte Carlo runs. In each Monte Carlo run, the eigenvectors
calculated from each algorithm were obtained by ten updates,
where in each update, the estimates of and were modified
by 5000 data samples. For the two solid black and gray lines in
Fig. 1, and were 4-QAM and 8-QAM, respectively,
and the reference signals of our EVA and the CRMPA were,
respectively, and for , where the
parameter was randomly chosen from a Gaussian distri-
bution with zero mean and unit variance. It can be seen from
Fig. 1 that both performances are almost the same. However,
if the reference signal and the source signal were changed
for our EVA, the performances corresponding to such cases
were changed (see the black dotted and dashed lines), where in
black dotted and dashed lines, the reference signals were set to
be and , respectively, and
two source signals were 2-PAM that takes one of two values,

and 1 with equal probability . On the other hand, the
CRMPA hardly changes the performance (see gray dashed
line in Fig. 1), even for the case that the source signals were
2-PAM. For the interested reader, the details on the influence
of the reference signals can be found in [3]. Moreover, since
a deflation method was adopted in the CRMPA [3], whereas
our EVA can recover all source signals simultaneously without
using a deflation method, there is a slight difference for their
computational times [For example, under the three conditions
that the source signals are the QAM signals, that the ability of
the machine is Dual Core Processor (2.59 GHz, 2.0 GB RAM),
and that the function (tic, toc) of MATLAB ver.7.3 is used, the
computational times measured for one update are, respectively,
2.22 [s] (for our EVA) and 3.53 [s] (for the CRMPA)]. From
all the results, we conclude that our EVA has almost the same

Fig. 1. Performances of our EVA and the CRMPA with varying SNR levels, in
the cases of 5000 data samples.

ability as the CRMPA, although the computational time of our
EVA is a little shorter than the CRMPA. Moreover, our EVA
has a possibility of obtaining better performances than the
CRMPA, choosing an appropriate reference signal.

V. CONCLUSION

We have proposed an EVA for solving the BD problem. The
simulation results have demonstrated the effectiveness of the
proposed EVA. However, from the simulation results, one can
see that the EVA has such a drawback that it is sensitive to
Gaussian noise. In a forthcoming paper, we will propose an EVA
having such a property that the BD can be achieved with as little
insensitivity to Gaussian noise as possible.
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