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A Matrix Pseudo-Inversion Lemma for Positive
Semidefinite Hermitian Matrices and Its Application
to Adaptive Blind Deconvolution of MIMO Systems
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Abstract—In the simplest case, the matrix inversion lemma gives
an explicit formula of the inverse of a positive-definite matrix
added to a rank-one matrix as follows:( + ) 1 =

1 1 (1+ 1 ) 1 1 It is well known in the lit-
erature that this formula is very useful to develop a recursive least-
squares algorithm for the recursive identification of linear systems
or the design of adaptive filters. We extend this result to the case
when the matrix is singular and present a matrix pseudo-inver-
sion lemma along with some illustrative examples. Such a singular
case may occur in a situation where a given problem is overdeter-
mined in the sense that it has more equations than unknowns. This
lemma is important in its own right, but in order to show the use-
fulness of the lemma, we apply it to develop an adaptive super-
exponential algorithm for the blind deconvolution of multi-input
multi-output systems.

Index Terms—Adaptive super-exponential algorithm (SEA),
matrix pseudo-inversion lemma, recursive algorithms.

I. INTRODUCTION

THE familiar matrix inversion lemma states in the simplest
case that the inverse of a positive-definite matrix added

a rank-one matrix can be represented as

(1)

where the superscript denotes the complex conjugate trans-
pose (or Hermitian) operation. It is well known in the liter-
ature that this formula is very useful to develop a recursive
least-squares algorithm for the recursive identification [1], [2]
or the design of adaptive filters [3].

In this paper, we extend this matrix inversion lemma to the
case when the matrix is singular and show a matrix pseudo-in-
version lemma together with some illustrative examples. Such
a singular case may occur in a situation where a problem dealt
with is overdetermined in the sense that it has more equations
than unknowns. In particular, we encountered this singular sit-
uation when we developed an adaptive version of the super-ex-
ponential method (SEM) for the blind deconvolution of a multi-
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input multi-output (MIMO) system, where the number of its out-
puts is greater than the number of its inputs [9]–[11].

We show briefly how the matrix pseudo-inversion lemma can
be applied to obtain an adaptive super-exponential algorithm
(SEA) for the blind deconvolution of a MIMO system. We in-
clude simulation results for the performance of the algorithm in
order to show the usefulness of the lemma, where we compare
the performance of the algorithm using the lemma with that of
the algorithm using the built-in function in MATLAB Version
7.1.0 for calculating pseudo-inverse instead of using the lemma.

This paper uses the following notation. Let denote the set
of all integers. Let denote the set of all complex numbers.
Let denote the set of all matrices with complex
components. The superscripts , , and denote, respectively,
the transpose, the complex conjugate and the (Moore–Penrose)
pseudo-inverse operations of a matrix. The symbol denotes
the direct sum of subspaces or the direct sum of matrices and the
superscript denotes the orthogonal complement of a subspace
[12]. The symbol means equality by definition. Let
stand for .

II. MATRIX PSEUDO-INVERSION LEMMA

The following lemma gives an explicit formula of the pseudo-
inverse for a positive semidefinite Hermitian matrix added to
a general rank-one matrix called a dyad.

Lemma 1: Let be a positive semidefinite Hermi-
tian matrix, and let be a nonzero vector. Let the linear
vector space be uniquely decomposed as

, where denotes the image (or range) space of
and denotes the orthogonal complement of . Let

be decomposed uniquely as

(2)

Let be defined as

(3)

Then, the pseudo-inverse of the matrix is explicitly
expressed, depending on the values of vectors and , as
follows.
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1) If , then

(4)

2) If and , then

(5)

3) If and , then

(6)

where and are respectively defined by

(7)

(8)

with

(9)

where is the set of all 2 2 matrices with real com-
ponents.

The proof of Lemma 1 is very lengthy and is thus relegated
to Appendix A.

It can be seen that the first and second expressions of the
pseudo-inverse given in (4) and (5) can be included as special
cases in the third expression of the pseudo-inverse given in (6).
Namely, we have the following theorem.

Theorem 1: Under the same conditions in Lemma 1, it fol-
lows that

(10)

where and are defined by (7) and (8), respectively.
The proof of Theorem 1 is shown in Appendix B.
Remark 1: In the late 1980s, Ogawa extended the matrix in-

version lemma to the singular case and presented an operator
pseudo-inversion lemma [15]. Instead of the adding term
in (3), he treated a more general adding term , where

is an operator and is an positive definite operator, but he
gave the operator pseudo-inversion lemma under the condition

(11)

Therefore, case 1) of Lemma 1 is included in the case he just
considered, but cases 2) and 3) are not treated by him. We should
note that the above condition does not hold true in a nonsta-
tionary environment for blind deconvolution of MIMO systems
(see Section IV for details).

In order to present illustrations of the matrix pseudo-inver-
sion lemma, we demonstrate illustrative examples. We consider
a single matrix with three different values of vector , as
follows:

(12)

Case 1)

(13)

Case 2)

(14)

Case 3)

(15)

where is a vector that is defined by .
Then putting , the matrix is calculated for

each vector , as follows.
Case 1)

(16)

Case 2)

(17)

Case 3)

(18)

Since is the orthogonal projection of onto and
is the orthogonal projection of onto

[7], it follows from (2) that the vector is decomposed into two
vectors and by using the following relations:

(19)

(20)

where

(21)

(cf. (96) and (97) in Appendix A), is the 3 3 identity matrix,
and denotes the Euclidean norm of the vector .

First, we consider the case when [Case 1)]. From
(19)–(21), we have

(22)
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where we note . Therefore, the pseudo-inverse of
the matrix is obtained by applying (4) which is
the case when in Lemma 1, as follows:

(23)

As an evaluation of the value of the pseudo-inverse ,
we consider the following error matrices defined by using the
Moore–Penrose conditions [5], [6]:

(24)

(25)

(26)

(27)

We note that all of the error matrices vanish when the value
of is correct. Substituting (16) and (23) into (24)–(27), we
obtain , , , and . Therefore, these
results prove that the value of the pseudo-inverse is correct
in Case 1).

Similarly, we obtain the pseudo-inverse and evaluate its
value in the case when [Case 2)] and
[Case 3)]. From (19)–(21), two vectors and are obtained
in each case, as follows.

Case 2)

(28)

Case 3)

(29)

The pseudo-inverse of the matrix is calcu-
lated from (5) in Case 2) and from (6)–(8) in Case 3) as follows.

Case 2)

(30)

Case 3)

(31)

Case 2) corresponds to the case when and in
Lemma 1, and Case 3) corresponds to the case when
and in Lemma 1.

Then, the values of the pseudo-inverse are evaluated by
using the error matrices in (24)–(27). Because all of the error
matrices become zero, it can be seen that the values of the
pseudo-inverse are correct in Cases 2) and 3).

Therefore, these examples may convince ourselves that
Lemma 1 is true.

III. APPLICATION TO ADAPTIVE BLIND DECONVOLUTION

This section provides a brief explanation of the problem of
blind deconvolution of MIMO systems and introduce the multi-
channel SEA (MSEA) proposed in [8] for reader convenience,
but the reader who is familiar with this problem along with the
MSEA may proceed to the line below (37).

Let us consider a MIMO system with inputs and outputs
as described by

(32)

where is an -column vector of output signals, is an
-column vector of input (or source) signals, and is an

matrix sequence called the impulse response. The transfer
function of the channel is defined by

(33)

It is assumed for theoretical analysis that the noise is absent
in (32).

To recover the source signals, we process the output signals
by an equalizer (or deconvolver) described by

(34)

The objective of multichannel blind deconvolution is to con-
struct an equalizer that recovers the original source signals only
from the measurements of the corresponding outputs.

We put the following assumptions on the channel, the source
signals, and the deconvolver [8].

A1) The transfer function is stable and has full
column rank on the unit circle (this implies
that the unknown system has less inputs than outputs,
i.e., , and there exists a left stable inverse of
the unknown system).

A2) The input sequence is a complex, zero-mean,
non-Gaussian random vector process with element
processes , . The element processes
are mutually independent. Moreover, each element
process is an i.i.d. process with a variance

and a fourth-order cumulant . The
variances ’s and the fourth-order cumulants ’s
are unknown.

A3) The equalizer is a finite-impulse-response (FIR)
channel of sufficient length so that the truncation
effect can be ignored.

Under A3), let us consider an FIR equalizer with the transfer
function given by

(35)
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where and are respectively the first and the last super-
scripted numbers of the tap coefficients ’s of the equalizer

, and the length is taken to be suffi-
ciently large. Let be the -column vector consisting of the
tap coefficients (corresponding to the th output) of the equal-
izer defined by

(36)

(37)

where is the th element of matrix .
Inouye and Tanebe [8] proposed the MSEA for finding the tap

coefficient vectors ’s of the equalizer , each iteration of
which consists of the following two steps:

for (38)

for (39)

where and stand, respectively, for the result of the
first step and the result of the second step. Let be the

-column vector consisting of the consecutive inputs of
the equalizer defined by

(40)

(41)

where is the th element of the output vector of the
channel in (32). Then, the correlation matrix is represented
as

(42)

and the fourth-order cumulant vector is represented as

(43)

where denotes the expectation of a random variable . We
note that the last term can be ignored in case of ,
in which case for all .

In addition, we obtain (from [8, eqs. (32) and (39)])

for (44)

We should note that the stationarity of the input process
[or the assumption A2)] ensures the relation (44) and that the
relation (44) means that the vector obtained by (38) satisfies

(45)

Consider the batch algorithm in (38) and (39). Equation (39)
constrains a weighted norm of vector to equal one, and thus

we assume this constraint is always satisfied using a normaliza-
tion or an automatic gain control (AGC) of at each time .
To develop an adaptive version of (38), we must specify the de-
pendency of each time and rewrite (38) as

(46)

In order to develop an adaptive version of the MSEA, we
should obtain recursion formulas for time-updating of matrix

, vector , and pseudo-inverse in (46), respec-
tively, as

(47)

(48)

where

(49)

Here, and denote the estimates of
and at time , respectively, and is a positive number
close to, but greater than zero, which accounts for some expo-
nential weighting factor or forgetting factor [3]. For example,
we may take .

Because we consider the case when the number of inputs is
less than the number of output , i.e., , the correlation
matrix is not of full rank and a singular matrix [9]. There-
fore, we may apply the matrix pseudo-inversion lemma to the
recursive equation (47).

By applying Lemma 1 to (47) for obtaining a recursive for-

mula for time-updating of pseudo-inverse , we
have the following lemma.

Lemma 2: Let , , , , , , and in Lemma 1 be
respectively defined as

(50)

(51)

(52)

(53)

(54)

(55)

(56)

Then, substituting these definitions into Lemma 1, the recur-

sion for the pseudo-inverse of the correlation matrix
from is explicitly expressed, depending on the

values of vectors and , as follows.
1) If , then

(57)

2) If and , then

(58)
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3) If and , then

(59)

where and are, respectively, defined by

(60)

(61)

These equations are initialized by their values appropriately
selected or calculated by the batch algorithm in (38) and (39) at
initial time and used for .

The proof of Lemma 2 is easy and follows from Lemma 1
along with simple calculations.

Based on Lemma 2 along with (46)–(48), we have the fol-
lowing theorem, which gives a recursion formula for time-up-
dating of the tap vector for .

Theorem 2: The recursion for is

(62)

where

(63)

(64)

(65)

(66)

Here, is a positive constant greater than but less than one,

and is the pseudo-inverse of and is calcu-
lated using the formula (59).

The proof of Theorem 2 is shown in Appendix C.
Remark 2: The recursive algorithm proposed by Shalvi and

Weinstein [13] can be shown to correspond to the particular case
of Theorem 2, where and the correlation matrices

’s are nonsingular.
Remark 3: Based on Theorem 2, we have developed a recur-

sive algorithm implementing the recursion formula (62) [14],
but we have not yet theoretically analyzed the stability and rate
of convergence of the algorithm. See [16] for details of the sta-
bility analysis of the standard recursive least-squares (RLS) al-
gorithm and its variants.

Remark 4: It is well known that the standard RLS algorithm
uses the matrix inversion lemma and the order of (i.e.,

) computations per recursive iteration, where is the

filter order [16]. The same computational complexity of
holds true for Theorem 2. Namely, the recursive algorithm
implementing the recursion (62) requires computations
per recursive iteration, where . On the other hand,
the inversion or the pseudo-inversion of an matrix
requires computations [17, p. 239]. We shall see this
computational difference between the two methods through
computer simulations in Section IV.

IV. SIMULATION RESULTS

To demonstrate the usefulness of the matrix pseudo-inversion
lemma, some computer simulations for obtaining the pseudo-

inverse of the correlation matrix in (47) by
using Lemma 2 were conducted. We note here that we do not
use Theorem 2, because we are not interested in finding ’s

but interested in calculating . The results of calculating
’s and recovering original sources ’s are found in [11]

and [14].
We considered a MIMO system with two inputs
and three outputs and assumed that the system

is FIR and the length of channel is three, that is, ’s in (33)
were set to be

(67)

Two source signals were 4-PSK and 8-PSK signals, respec-
tively. The length of the deconvolver was chosen to be five

. For obtaining the pseudo-inverse of the correlation
matrix, the initial values of , , and were estimated by ap-
proximating ensemble averages with empirical averages using
100 data samples. The value of was chosen as for
each . As a measure of performance, we use the following sum
of the Euclidean or Frobenius norms of the four error matrices
in (24) through (27) for each :

(68)

First, we considered the time-invariant MIMO system in (67).
In this case, from A2), the input process is stationary, and
this means that the random process is also stationary.
Thus, it follows from (42) that belongs almost surely (a.s.)
(or with probability 1) to , that is

(69)

The proof of this relation is shown in Appendix D. On the other
hand, it follows from (47) with and that

(70)
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Fig. 1. Values of theM versus iterations (or discrete times) (a) using the matrix
pseudo-inversion lemma and (b) using the built-in function “pinv” for the time-
invariant MIMO system.

If the input process is ergodic, then

(71)

Since the sequence is monotonically increasing,
(71) implies that there exists a time such that

for any (72)

Therefore, it follows from (69) and (72) that

for (73)

which means from (52) and (54) that

(74)

where and are, respectively, defined by (54) and (52).
Therefore, we can assume in this application that the component
vector always vanishes, that is, , and we
can use the recursion formula (57) for calculating the pseudo-

inverse at each iteration (or time) .
We compared the performance of the proposed method (i.e.,

the method using the matrix pseudo-inversion lemma) with the
performance of the method using the built-in function “pinv”
in MATLAB Version 7.1.0 for calculating the pseudo-inverse

of correlation matrix . The pseudo-inverses
are calculated iteratively (or recursively) for each iteration (or
recursion) number for the two methods. Fig. 1(a) shows the
performance results of the performance measure for the pro-
posed method by using 500 data samples. Fig. 1(b) shows the
performance results of the for the latter method by using the
same data samples.

We also compared performances of the two methods in com-
putational complexity by using the built-in function “flops” in

TABLE I
COMPARISON OF THE NUMBERS OF FLOATING POINT OPERATIONS [�10 ]

TABLE II
COMPARISON OF THE EXECUTION TIMES [s]

MATLAB Version 5.2. Table I shows the average of the numbers
of floating point operations (flops) over 100 independent Monte
Carlo runs using 500 data samples of the outputs for each Monte
Carlo run by changing the length of the deconvolver from 5
to 10.

Moreover, we compared performances of the two methods
in execution time by using a PC with a 3.0-GHz processor and
1-GB main memories used in simulation experiments. Table II
shows the average of the execution times over 100 independent
Monte Carlo runs using 500 data samples of the outputs for each
Monte Carlo run by changing the length of the deconvolver
from 5 to 10.

It can be seen from Fig. 1 that the accuracy of the matrix
pseudo-inversion lemma is equivalent to the built-in function
“pinv.” However, Table I shows that the average of the num-
bers of floating-point operations for the proposed method is
much smaller than that for the method using the built-in func-
tion “pinv.” The ratios of the former average to the latter average
are about 0.094 and 0.054 for and , respectively.
Table II shows that the average of the execution times for the
proposed method is smaller than that for the method using the
built-in function “pinv.” The ratios of the former average to the
latter average are about 0.56 and 0.34 for and ,
respectively.

The computational complexity of the method using the
built-in function “pinv” increases more than the computational
complexity of the proposed method when the length of the
deconvolver increases. We consider that one of reasons why
the matrix pseudo-inversion lemma is superior to the built-in
function “pinv” in the number of floating-point operations and
the execution times is that it is not necessary to calculate the
pseudo-inverse of (4) in Lemma 1, because the results of the

previous iteration can be used instead of
in (57) of Lemma 2 (see Remark 4 for details).

Next, we considered a time-variant MIMO system, where the
system is the same in (67) except that the last matrix of
the impulse response of the channel was varied by adding 0.3
to all of its elements at discrete time . In this case, the
random process is not stationary, that is, .
Fig. 2(a) and (b) shows the performance results of the perfor-
mance measure for the proposed method and the method
using the built-in function “pinv” by using 500 data samples of
the outputs of the MIMO time-variant system. Fig. 2(c) shows
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Fig. 2. Values of theM versus iterations (a) using the matrix pseudo-inversion
lemma and (b) using the built-in function “pinv.” (c) Values of (1=L)rank ~RRR
for the time-variant MIMO system.

the values of the rank of normalized by the length of the de-
convolver in this case.

It can be seen from Fig. 2(a) and (b) that the accuracy of the
matrix pseudo-inversion lemma is slightly worse than that of
the built-in function “pinv,” but the formula (10) of the matrix
pseudo-inversion lemma can treat the changes of the channel.

Here, when we use (7), we should note how to calculate third
term of the right-hand side of (7). There exists a very
small positive number (which depends on a equipment used),
such that numbers less than are considered to be zero [7].
Therefore, we should set

if

if
(75)

Moreover, it can be seen from Fig. 2(c) that the rank of
normalized by the length of the deconvolver changed from 2.8
to 3.0 at discrete time . In this simulation, the recursion
formula (57) in Lemma 2 was used for calculating the pseudo-
inverse of except when . Only when , just
the channel changed, and the recursion formula (59) in Lemma
2 was used for calculating the pseudo-inverse of . Therefore,
we consider that the value of rank normalized by the length
of the deconvolver can be used as an index for detecting the
change of the channel and for changing the recursion formulas
of the matrix pseudo-inversion lemma from (4)–(6) (see [14] for
details).

From these results, the matrix pseudo-inversion lemma is
useful to calculate the pseudo-inverse of a correlation matrix
for adaptive algorithms of blind deconvolution in time-invariant
MIMO systems and even time-variant MIMO systems.

V. CONCLUSION

We extended the matrix inversion lemma to the case when
the matrix in is singular and presented a matrix
pseudo-inversion lemma together with some illustrative exam-
ples. In order to show the usefulness of this lemma, we applied
it to develop an adaptive SEA for the blind deconvolution of a
MIMO system. It has been shown through computer simulations
that the matrix pseudo-inversion lemma is useful for adaptive
algorithms of blind deconvolution in time-invariant MIMO sys-
tems and even time-variant MIMO systems.

We have already found an explicit formula of the pseudo-in-
verse of an positive-semidefinite matrix , where is
an matrix. Some details concerning this formula and its ap-
plication to block-based adaptive blind deconvolution of MIMO
systems can be found in [18] and [19]. However, we have not yet
extended it to the case where and become linear bounded
operators with a closed range. This type of extension is very im-
portant in applications to image processing [15] and is one of the
remaining problems. Another important remaining issue is the
stability analysis of the algorithm mentioned in Remark 3.

APPENDIX A
PROOF OF LEMMA 1

First, we consider the case when . Put

(76)

Since is Hermitian, it is unitary diagonalizable, that is, there
exist a unitary matrix and a diagonal matrix such that

(77)

which is called the spectral decomposition (or eigenvalue de-
composition) of . In (77), the diagonal elements ’s are ar-
ranged in decreasing order as

(78)

where . If rank , then
for . Thus, we have and partitioned as

(79)

(80)

where . Therefore, from (77), we have

(81)
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Since , there exists such that

(82)

From (76), (81), and (82), we have

(83)

Here, we note the following properties of matrix pseudo-in-
verses [5].

P1) If and are unitary, then

(84)

P2) If where and ,
then

(85)

P3) Let , and let

(86)

be a rank decomposition of , that is,
. Then

(87)

Using (83) and the above properties, we have

(88)

The last equality in (88) comes from the fact that is
nonsingular, because is nonsingular. Using the matrix inver-
sion lemma [3], [4], we have

(89)

On the other hand, from (81), (82), and P1), we have

(90)

(91)

Using (82) and (88)–(91), we obtain

(92)

Equation (92) is equivalent to (4), because in the case
when .

Now, we consider the proof of the lemma in the general case
where . The proof is carried out in two stages. In the first
stage, we get the pseudo-inverse of the matrix defined by

(93)

where denotes the direct sum of two matrices, that is,
if and . In the second

stage, we obtain the pseudo-inverse of the matrix , which is
represented as

(94)

where is the 2 2 permutation matrix defined by

(95)

The first stage of the proof is carried out as follows. Since it
holds true that

for a nonzero vector (96)

we have

(97)

because the matrix is represented as a rank decomposition
of itself [see P3)]. Therefore, from (92), (93), and P2), we have

(98)

Equation (98) is equivalent to (5) in the case where ,
because in this case [see (3) and (93)].
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The second stage of the proof is carried out as follows: Since
, there exists

such that

(99)

From (82) and (99), we have

(100)

From (3), (81), and (100), we obtain

(101)

Using P1) and (101), we have

(102)

where

(103)

Then, becomes

(104)

where

(105)

Since

(106)

there exists a unitary matrix and a diagonal matrix such that

(107)

where , and is a nonsin-
gular diagonal matrix belonging to . Since

(108)

there exist and such that

(109)

Therefore, from (104), (107), and (109), we have

(110)

Put

(111)

Since , we have . Therefore

(112)

This means that, from (101) and (103), we have

(113)

which implies from (110) and (111) that

(114)

Therefore, is nonsingular. By a generalized matrix inversion
lemma in [4, p. 656], we have

(115)

where

(116)

Here we note that it can be shown that is also nonsingular if
is nonsingular. Since , becomes

(117)

which gives

(118)

where

(119)

The proof of the nonsingularity of matrix is shown in the
last part of this Appendix.

From (107)–(119) along with P3), we have

(120)
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where we have used from (107) and (109)

(121)

(122)

Using (102) and (120) along with P3), we obtain

(123)

where we have used

(124)

(125)

Equation (124) holds true because P1) holds true and

(126)

Equation (125) also holds true because

(127)

On the other hand, from (107) and (109), we have

(128)

This gives from (121)

(129)

Similarly, we obtain

(130)

Furthermore

(131)

Using (100), we have

(132)

It follows from (124), (131), and (132) that

(133)

Similarly, we obtain

(134)

Using (129), (130), (133), and (134), we have from (117)–(119)

(135)

This completes the proof of Lemma 1.
The proof of the nonsingularity of matrix is as follows.

From (77) and (79)–(81), we have

(136)

(137)

(138)

From (82), (99), and (136)–(138), we have

(139)

(140)

(141)

(142)

Therefore, from (98), (139), and (140), we have from (134)

(143)
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Moreover, from (98), (141), and (142), we have from (133)

(144)

where .
Using (143) and (144), defined by (119) becomes

(145)

Therefore, matrix is nonsingular. This completes the proof.

APPENDIX B
PROOF OF THEOREM 1

First, we consider case 1). If , then and are
represented from (7) and (8), respectively, as follows:

(146)

(147)

Then, from (6), (146), and (147), we have

(148)

which is identical to (4).
Second, we consider case 2). If and , then and

are represented from (7) and (8), respectively, as follows:

(149)

(150)

Then, from (6), (149), and (150), we have

(151)

which is identical to (5). This completes the proof.

APPENDIX C
PROOF OF THEOREM 2

Substituting (48) and into (46), we have

(152)

On the other hand, from (44)–(47), we obtain the following
relation.

(153)

Substituting (153) into (152), the recursion formula for time-
updating of the tap vector is obtained as follows:

(154)

where

(155)

This completes the proof.
APPENDIX D

PROOF OF RELATION (69)

As in Lemma 1, the vector linear space can be uniquely
decomposed as

(156)

Since , it can be decomposed as

(157)

where

and (158)

Since is the orthogonal projection of onto the sub-

space and is the orthogonal projection of
onto the subspace , and are respectively
represented as

(159)

(160)

It follows from (42) and (160) that

(161)
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which means

(162)

because

(163)

where denotes the trace of a matrix .
Since , (162) means that is a.s. zero,

i.e.,

a.s (164)

which implies

a.s (165)

Therefore, we obtain from (157) and (158)

a.s (166)

This completes the proof.

ACKNOWLEDGMENT

The authors would like to thank Dr. I. Yamada and the re-
viewers for their comments and suggestions, especially the two
reviewers who pointed out the earlier work by Ogawa [15].

REFERENCES

[1] L. Ljung, System Identification: Theory for the User. Upper Saddle
River, NJ: Prentice-Hall, 1987.

[2] J. M. Mendel, Lessons in Estimation Theory for Signal Processing,
Communications, and Control. Englewood Cliffs, NJ: Prentice-Hall,
1995.

[3] S. Haykin, Adaptive Filter Theory, 3rd ed. Upper Saddle River, NJ:
Prentice-Hall, 1996.

[4] T. Kailath, Linear Systems. New York: Prentice-Hall, 1980.
[5] R. Penrose, “A generalized inverse for matrices,” Proc. Cambridge

Philops. Soc., vol. 51, pp. 406–413, 1955.
[6] R. Penrose, “On best approximate solutions of linear matrix equations,”

Proc. Cambridge Philops. Soc., vol. 52, pp. 17–19, 1956.
[7] S. L. Campbell and C. D. Meyer, Jr., Generalized Inverses of Linear

Transformations. New York: Dover, 1979.
[8] Y. Inouye and K. Tanebe, “Super-exponential algorithms for multi-

channel blind deconvolution,” IEEE Trans. Signal Process., vol. 48,
no. 3, pp. 881–888, Mar. 2000.

[9] K. Kohno, Y. Inouye, M. Kawamoto, and T. Okamoto, “Adaptive
super-exponential algorithms for blind deconvolution of MIMO
systems,” in Proc. ISCAS, Vancouver, ON, Canada, May 23–26, 2004,
vol. 5, pp. 680–683.

[10] K. Kohno, Y. Inouye, M. Kawamoto, and T. Okamoto, “An adaptive
super-exponential deflation algorithm for blind deconvolution of
MIMO systems using the QR-factorization of matrix algebra,” in Proc.
MWSCAS, Hiroshima, Japan, Jul. 25–28, 2004, vol. 3, pp. 419–422.

[11] K. Kohno, Y. Inouye, and M. Kawamoto, “An adaptive super-expo-
nential deflation algorithm for blind deconvolution of MIMO systems
using the matrix pseudo-inversion lemma,” in Proc. ISCAS, Kobe,
Japan, May 23–26, 2005, pp. 5870–5873.

[12] P. Lancaster and M. Tismenetsky, The Theory of Matrix. San Diego,
CA: Academic, 1985.

[13] O. Shalvi and E. Weinstein, “Super-exponential methods for blind de-
convolution,” IEEE Trans. Inf. Theory, vol. 39, no. 2, pp. 504–519, Mar.
1993.

[14] K. Kohno, Y. Inouye, and M. Kawamoto, “Adaptive super-exponential
methods for blind deconvolution of MIMO systems using the matrix
pseudo-inversion lemma,” IEEE Trans. Circuits Syst. I, Reg. Papers,
submitted for publication.

[15] H. Ogawa, “An operator pseudo-inversion lemma,” SIAM J. Appl.
Math., vol. 48, no. 6, pp. 1527–1531, Dec. 1988.

[16] G. E. Bottomley and S. T. Alexander, “A novel approach for stabilizing
recursive least squares filters,” IEEE Trans. Inf. Theory, vol. 39, no. 8,
pp. 1770–1779, Aug. 1993.

[17] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed. Bal-
timore, MD: Johns Hopkins Univ. Press, 1989.

[18] K. Kohno, Y. Inouye, and M. Kawamoto, “A matrix pseudo-inversion
lemma and its application to block-based adaptive blind deconvolution
for MIMO systems,” in Proc. ISCAS, New Orleans, LA, May 27–30,
2007, pp. 3490–3493.

[19] K. Kohno, Y. Inouye, and M. Kawamoto, “A block-based adaptive
super-exponential deflation algorithm for blind deconvolution of
MIMO systems using the matrix pseudo-inversion lemma,” Signal
Process., to be published.

Kiyotaka Kohno (S’04–M’07) received the B.Eng.
and M.Eng. degrees in electrical electronics and sys-
tems engineering from Nagaoka University of Tech-
nology, Nagaoka, Japan, in 1981 and 1983, respec-
tively, and the D.Eng. degree in electronic functions
and systems engineering from Shimane University,
Matsue, Japan, in 2007.

From April 1983 to March 1990, he was a
Researcher with Matsushita Electric Industrial
Company, Ltd. Since April 1990, he has been with
Yonago National College of Technology, Yonago,

Japan, where he was an Assistant Professor from April 1990 to March 1994,
an Associate Professor from April 1994 to March 2007, and is currently a
Professor of Electronic Control Engineering. His current research interests are
in blind signal processing, blind source separation, communication systems,
and image processing.

Dr. Kohno is a member of the European Association for Signal processing
(EURASIP), the Institute of Electronics, Information and Communication Engi-
neers (IEICE) in Japan, and the Information Processing Society of Japan (IPSJ).

Yujiro Inouye received the B.Eng., M.Eng., and
D.Eng. degrees in control engineering from Osaka
University, Osaka, Japan, in 1966, 1968, and 1971,
respectively.

From April 1971 to March 1997, he was with the
Faculty of Engineering Science, Osaka University.
Since April 1997, he has been with the Faculty
of Science and Engineering, Shimane University,
Matsue, Japan, where he is currently a Professor
of Electronic and Control Systems Engineering.
His major research interests are in blind signal

processing, blind source separation, neural networks, and communications.
Dr. Inouye is a member of the European Association for Signal processing

(EURASIP), the Institute of Electronics, Information and Communication En-
gineers in Japan, the Society of Instrument and Control Engineers in Japan, and
the Institute of Systems, Control, and Information Engineers in Japan.

Mitsuru Kawamoto received the B.Eng., M.Eng.,
and D.Eng. degrees in control engineering from
Kyushu Institute of Technology, Kyushu, Japan, in
1992, 1994, and 1997, respectively.

He was a Research Scientist with the Bio-Mimetic
Control Research Center, Institute of Physical and
Chemical Research (RIKEN), from April 1997 to
December 1999. From January 2000 to March 2002,
he was an Assistant Professor and then an Associate
Professor, from April 2002 to March 2005, with
the Department of Electronic and Control Systems

Engineering, Shimane University, Matsue, Japan. From April 2004 to March
2005, he was with the Department of Electrical Engineering and Electronics,
The University of Liverpool, Liverpool, U.K., as a Visiting Researcher. Since
March 2005, he has been a Research Scientist with the National Institute of
Advanced Industrial Science and Technology (AIST), Ibaraki, Japan. His cur-
rent research interests include blind signal processing, higher order statistics,
sound signal processing, and communication systems.

Dr. Kawamoto is a member of the Society of Instrument and Control Engi-
neers, the Institute of Electronics, Information and Communication Engineers,
and the Acoustical Society of Japan.


