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ABSTRACT

The present paper deals with the blind equalization prob-
lem of a single-input single-output infinite impulse response
(SISO-IIR) system with additive Gaussian noise. To solve
the problem, we propose a ”super-exponential method”
(SEM). The novel point of the proposed SEM is that even
when Gaussian noise is added to the output of the sys-
tem, the blind equalization can be achieved with as little
influence of Gaussian noise as possible; hence the pro-
posed SEM is referred to as a ”robust super-exponential
method” (RSEM). Simulation results show the validity of
the proposed RSEM.

1. INTRODUCTION

In applications such as (mobile or wireless) communica-
tions, an input signal often propagates through a multipath
environment of an unknown transfer function between the
signal source and a receiver. Blind equalization is used to
reconstruct the original input signal and/or to estimate the
transfer function from the received signal [1].

Recently Shalvi and Weinstein proposed an attractive
approach for the blind equalization of SISO systems, which
is called the super-exponential method (SEM) [6], and
then several researchers extended the idea of the SEM,
e.g., see [2, 4, 8]. and references therein. One of the at-
tractive properties of the SEMs is to converge iteratively
at a super-exponential rate to a desired solution, which
achieves the blind equalization; hence the ”super-exponent-
ial” method was named. However, the SEMs have such a
significant drawback that if the SEMs are applied to the
blind equalization in the presence of additive Gaussian
noise, then the convergence of the SEMs close to the de-
sired solutions cannot be guaranteed [6].

In this paper, an approach is proposed in order to over-
come the drawback of the SEMs. In the proposed ap-
proach, only higher-order cumulants are used; consequently
the proposed algorithm can be used to detect the desired
solutions with as little influence of Gaussian noise as pos-
sible, from which the proposed SEM is referred to as a

y(t)s(t) x(t)

n(t)

H(z) W(z)

Fig. 1. The composite system of an unknown system and
a filter.

robust super-exponential method (RSEM). Computer sim-
ulations are presented to demonstrate the validity of the
proposed RSEM.

2. PROBLEM FORMULATION AND
ASSUMPTIONS

We consider a single-input single-output (SISO) system
with an additive noise as described by

y(t) =
∑∞

k=−∞h(k)s(t− k) + n(t), (1)

where {s(t)} is an unobserved input sequence generated
from a discrete-time stationary random process, h(k) is
the impulse response of an unknown time-invariant sys-
tem defined by H(z) =

∑∞

k=−∞ h(k)zk, y(t) and n(t) de-
note the output of the system and Gaussian noise, respec-
tively. Fig. 1 illustrates a diagram of the basic problem.
Namely, our objective in this paper is to propose a method
for adjusting the equalizer W (z) =

∑∞

k=−∞ w(k)zk so
that G(z) := W (z)H(z) becomes

Ĝ(z) = Ŵ (z)H(z) = czk1 , (2)

even if the Gaussian noise n(t) is included into the out-
put y(t), where c in czk1 is a nonzero complex number
standing for a scale change and a phase shift, and the su-
perscript ”k1” of zk1 denotes an integer standing for a con-
stant delay. Note that the notation z is used instead of the
commonly used z−1 in the z-transform. We allow all of
the above signals and the parameters of the system and
equalizer to be complex-valued.

To find the solution (2), we put the following assump-
tions on the system, the input signal, and the equalizer.
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A1) The unknown system H(z) is a stable, possibly non-
minimum phase, linear time-invariant filter whose inverse
(which may be noncausal and stable) H(z)−1 exists.
A2) The input sequence {s(t)} is a complex, zero-mean,
non-Gaussian random process. Moreover, the process {s(t)}
is an i.i.d. process with a nonzero variance σ2

s and a nonzero
(p + q + 1)st-order cumulants, κs defined as

κs = cum{s(t), · · · , s(t)
︸ ︷︷ ︸

p

, s∗(t), · · · , s∗(t)
︸ ︷︷ ︸

q+1

}, (3)

where p and q are nonnegative integers such that (p+q)≥2,
and cum{s1, s2, · · · , sn} denotes the nth-order (joint) cu-
mulant of s1, s2, · · · , sn.
A3) The equalizer W (z) =

∑L2

k=L1
w(k)zk is an FIR sys-

tem of sufficient length L = L2 − L1 + 1 so that the trun-
cation effect can be ignored.

The assumption A3) is necessary for an easy imple-
mentation of the equalizer W (z). However, in order to
ensure the convergence of the proposed method presented
in the next section, the equalizer should be an IIR system
(see Theorem 1). Therefore, the assumption A3) ensures
an easy implementation of the equalizer, but only an ap-
proximate convergence of the proposed method.

The combined system response subject to the finite
length restriction is

g(k) =
∑L2

l=L1
w(l)h(k−l). (4)

In a vector notation, (4) can be rewritten as

g = Hw, (5)

where g is a possibly infinite vector of the combined sys-
tem g = [· · · , g(−1), g(0), g(1),· · · ]T , w is an L-column
vector, that is, w = [w(L1), w(L1+1),· · · , w(L2)]T , and
H = [hkl] is a matrix of L columns and possibly infinite
number of rows, whose elements are hkl = h(k−l), k =
−∞,· · · , ∞, l = L1, (L1 + 1),· · · , L2.

3. ROBUST SUPER-EXPONENTIAL METHODS
(RSEMS)

3.1. Two-step iterative procedure of vector g

To find the solution in (2), the following two-step iterative
procedure with respect to the elements g(k)’s of g is used:

g(k)[1] =
κs

γsαk
(g(k))p(g(k)∗)q, (6)

g(k)[2] = g(k)[1]/
√

σ2
x, (7)

where (·)[1], (·)[2] stand for the results of the first step and
the second step per iteration, g(k) in the right-hand side of
(6) is g(k)[2] at the previous step (note that at first iteration,
g(k) in the right-hand side of (6) is an initial value of g(k)),
p and q are nonnegative integers such that (p + q) ≥ 2,
γs denotes the fourth-order cumulant of s(t) defined by
γs := cum{s(t), s(t), s∗(t), s∗(t)}, αk denotes a positive
value (in subsection 3.2, it will be shown how we choose
the values of αk’s), the superscript ∗ denotes the complex

conjugate, and σ2
x denotes the variance of x(t), which is

the output of the equalizer W (z) (see Fig. 1).
The main difference between the two-step procedures

in the conventional SEMs (e.g., [2, 4, 6, 8]) and the pro-
posed one is the denominator of the first step, that is,
the conventional first step procedures include the second-
order cumulants of s(t), whereas our proposed one, that
is, (6) possesses only higher-order cumulants of s(t).

As for the convergence of two-step iterative procedure
(6) and (7), under the assumptions that the equalizer W (z)
is an IIR filter and that the noise in (1) is absent, we show
only a theorem of convergence (Theorem 1). The reader is
referred to [6] for the proof. However, when we must take
account of cases such that the equalizer is not of sufficient
length for H(z) (i.e., an undermodeled case shown in [5],
in this paper, we consider an undermodeled case) and that
the noise has a strong power, we should note that the de-
sired solutions of the two-step procedure may not fulfill
(2) but may approximately fulfill (2). A complete analysis
of the SEMs in undermodeled cases is shown in [5].

Theorem 1 [6]: Let g(k)(0) be an initial value for iter-
ations of two steps (6) and (7) for each k = −∞, · · · ,∞.
Let βk be non-negative scalar defined as

βk = |1/αk|
1

p+q−1 (8)

Let k0 be k0 = arg maxk∈{−∞,··· ,∞} βk|g(k)(0)|. Sup-
pose the index k0 is unique, that is,

βk0
|g(k0)(0)| > βk|g(k)(0)|

for any other k ∈ {−∞, · · · ,∞}, then as i → ∞, it fol-
lows

lim
i→∞

|g(k)(i)| =
{

0 for k 6= k0,
c̃ 6= 0 for k = k0,

where g(k)(i) denotes the value obtained in the ith cycle
of the iterations of two steps (6) and (7) and c̃ is a scalar
positive constant.

Remark 1 It is shown in [2, Section IV] that the integer
k0 shown in Theorem 1 is unique except for pathological
cases.

3.2. Two-step iterative procedure for w

To find the solution Ŵ (z) in (2), we adjust the elements of
the vector w so that g = Hw is equal to the vector δ(k1)

whose nth element is cδ(n−k1) for some fixed k1, where
δ(t) is the Kronecker delta function and k1 is an integer
standing for the same time shift as k1 in (2). However,
since w is of finite length, it may be only required that w

is chosen to minimize the distance (norm) between Hw

and δ(k1). Hence, in order to derive an algorithm with
respect to w, we consider the following weighted least
squares problem:

min
w

(Hw − g)T∗Λ(Hw − g). (9)

Here, Λ is a diagonal matrix whose diagonal elements all
are positive values. The solution is known to be given by

w = (HT∗ΛH)−1HT∗Λg. (10)

428



Note that from assumption A1), HT∗ΛH is invertible for
any L, because H is of full column rank and Λ is a non-
singular diagonal matrix (this fact is also mentioned in [6,
p. 508, line 10] without proof). The update rules of w

in the conventional and the proposed SEMs are based on
(10).

In the conventional SEMs ([2, 4, 6, 8]), the positive
diagonal elements of Λ in (10) are set to 1 or the variance
of the input s(t). This means that HT∗ΛH is calculated
by the second-order statistics of the output y(t). We con-
sider that this is the reason why the conventional SEMs
are sensitive to Gaussian noise.

In what follows, we shall show that HT∗ΛH in (10)
can be applied to a set of fourth-order cumulants of the
output y(t), if we choose appropriately a diagonal matrix
Λ in (9). To this end, as the diagonal elements λk (k =
−∞, · · · ,∞) of Λ, we choose the λk’s expressed as

λk := sign(γs)γsα̃k, k = −∞, · · · ,∞, (11)

α̃k :=
∑L2

l=L1
|hkl|2, (12)

where sign(γ) in (11) denotes the sign of γ, that is, sign(γ)
= 1 if γ > 0, sign(γ) = 0 if γ = 0, and sign(γ) = −1 if γ
< 0, and hkl in (12) denotes the element of H in (5), that
is, the parameter h(k−l) of H(z), k = −∞, · · · ,∞, l = L1,
(L1 + 1), · · · , L2.

Remark 2 The matrix Λ is generally a nonsingular ma-
trix except for pathological cases, and the elements of Λ
are positive values. To avoid completely the pathological
cases, the parameters L1 and L2 in (12) must be set to
enough large negative and positive values (say, −∞ and
+∞), respectively. Then α̃k in (12) becomes a positive
constant value for every k’s.

From (11) and (12), Λ can be expressed as sign(γs)IΛ̃,
where I is the identity matrix and Λ̃ is also a diagonal
matrix whose elements are γsα̃k, k = −∞, · · · ,∞. Then
substituting sign(γs)IΛ̃ into Λ in (10), the right-hand side
of (10) becomes

(HT∗Λ̃H)−1HT∗Λ̃g, (13)

because sign(γs)I is a diagonal matrix whose all elements
are either +1 or −1.

Here, HT∗Λ̃H in (13) can be expressed by the fourth-
order cumulants matrix of y(t), which is defined by
[C(4)

y,l ]r1,r2
= cum{y(t−r1), y

∗(t−r2), y(t−l), y∗(t−l)}
[7], that is,

HT∗Λ̃H :=
∑L2

l=L1
C

(4)
y,l , (14)

where [X]r1,r2
denotes the (r1, r2)th element of the L ×

L matrix X , in which ri’s take the values of L1, (L1 +
1), · · · , L2. As for HT∗Λ̃g in (13), by using (6) with αk

= α̃k in (12) and the similar way as in [2], it can be given
by

d := [dL1
, dL1+1, · · · , dL2

]T , (15)

where dl’s are given by

dl = cum{x(t), · · · , x(t)
︸ ︷︷ ︸

p

, x∗(t), · · · , x∗(t)
︸ ︷︷ ︸

q

, y∗(t− j)},

l = L1, L1+1, · · · , L2. Therefore, it can be seen from (14)
and (15) that the right-hand side of (10) can be calculated
by the fourth-order statistics of the output y(t), provided
that Λ in (9) is replaced by sign(γs)IΛ̃. Then, (13) can
be expressed as

w[1] = R−1d, (16)

where R:=
∑L2

l=L1
C

(4)
y,l . It can be easily shown that the

second step (7) is expressed as

w[2] := w[1]/
√

σ2
x. (17)

Hence, (16) and (17) are our proposed two steps to modify
w.

From (16), it can be seen that since the update proce-
dure of w consists of only higher-order cumulants of y(t),
then the two-step procedure (16) and (17) becomes less
sensitive to Gaussian noise. [Note that since (17) is only
used to normalize w, even if σ2

x is a second-order statistic,
there is less effect of Gaussian noise for finding the desired
solution ŵ, that is, Hŵ=δ(k1).] This is a novel key point
of our proposed SEM, from which the proposed method is
referred to as a robust super-exponential method (RSEM).

4. COMPUTER SIMULATIONS

To demonstrate the validity of the proposed method, many
computer simulations were conducted. Some results are
shown in this section. The simulation conditions, for ex-
ample, the settings of the unknown system H(z) and the
equalizer W (z), the input signal s(t), the parameters p
and q in (6), the definition of SNR, etc, were the same as
those in [3]. On the details of the simulation conditions,
see [3].

As a measure of performance, we used the intersym-
bol interference (ISI) defined in the logarithmic (dB) scale
by

ISI = 10 log10{(
∑

k|g(k)|2 − |gmax|2)/|gmax|2} (18)

where gmax is the component of g(k) having the maxi-
mal absolute value (the leading tap). However, the ISI is
not enough as a measure of performances. Thus by using
the mean-squared estimation error (MSE) and the bit error
rate (BER), we measured the performances of the RSEM.
However, the results are not put in the paper, because of
the page limitation. For the interested reader, the results
will be shown in [3]. For comparison, the SEM proposed
in [6] was used. On the simulation conditions of the SEM,
see [3].

Fig. 2 shows the results of the ISIs of the RSEM and
SEM, in the cases where the SNR levels were taken to
the values ranging from 0 to 20 dB, and ∞ dB (σ2

n = 0).
The ISIs shown in Fig. 2 are the average of the results ob-
tained by 100 Monte Carlo trials, and for each trial, the
vector w was modified by 20 iterations, and for each iter-
ation, the matrix R corresponding to each method and the
vector d were estimated, using several data samples (see
Fig. 2). The vertical and horizontal axes in Fig. 2 repre-
sent the average of ISIs denoted by <ISI> and the SNR,
respectively.
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Fig. 2. The performances of the RSEM and the SEM with
varying SNR levels, (a) in the cases of 1000 samples, 2500
samples, 5000 samples, (b) in the cases of 10000 samples,
15000 samples, 30000 samples.

It can be seen from Fig. 2 (a) that when the data sam-
ples are less than 5000, for each sample data and each
SNR level, the performances of the RSEM after 20 itera-
tions are better than those of the SEM. However, in order
to use the feature of the RSEM, which is insensitive to
Gaussian noise, at least 5,000 samples are needed. Note
that this data length is available for the case that the SNR
level is more than 5 dB. From Fig. 2 (b), it can be seen
that as the number of data samples increases, the RSEM
gives better performance for every SNR levels, whereas
the performance of the SEM hardly changes.

However, if these results are viewed from the point of
convergence speed, it can be discovered that there exists
the case that the convergence speed of the RSEM is slower
than the SEM (see Fig. 3). On the details of the results, see
[3].

From these results, we consider that the RSEM is ef-
fective for solving the blind equalization problem in the
presence of Gaussian noise. However, if quick responses
are demanded to the equalizers, there exists the case that

-5

-10

-15

-20
1 5 10 15

Iteration number

RSEM
SEM

20

Fig. 3. The performances of the RSEM and the SEM with
varying number of iterations, in the cases that the SNR
level is ∞ and the data length is 10000 samples.

it is better to use the SEM.

5. CONCLUSIONS

We have proposed an SEM for solving a blind equalization
problem, which is referred to as a robust super-exponential
method (RSEM). The RSEM is robust against Gaussian
noise, which means that the RSEM can be used to esti-
mate the inverse of the unknown transfer function H(z),
even if Gaussian noise is added to the output of H(z) (see
(1)). This is a novel property of the proposed method,
not possessed by the conventional SEMs. Using the com-
puter simulations we presented several results, in which
the RSEM was compared with the SEM under several con-
ditions.

As for further work, we consider extending the RSEM
so that the RSEM can be applied to multiple-input multiple-
output (MIMO) systems.
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