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Abstract. The multichannel blind deconvolution of finite-impulse re-
sponse (FIR) or infinite-impulse response (IIR) systems is investigated
using the multichannel super-exponential deflation methods. In the con-
ventional multichannel super-exponential deflation method [4], the so-
called “second-order correlation method” is incorporated in order to
estimate the contributions of an extracted source signal to the chan-
nel outputs. We propose a new multichannel super-exponential deflation
method using higher-order correlations instead of second-order correla-
tions to reduce the computational complexity in terms of multiplications
and to accelerate the performance of equalization. By computer simula-
tions, it is shown that the method of using fourth-order correlations is
better than the method of using second-order correlations in a noiseless
case or a noisy case.

1 Introduction

Multichannel blind deconvolution has recently received attention in such fields
as digital communications, image processing and neural information processing
[1],[2].

Recently, Shalvi and Weinstein proposed an attractive approach to single-
channel blind deconvolution called the super-exponential method (SEM) [3].
Extensions of their idea to multichannel deconvolution were presented by Inouye
and Tanebe [4], Martone [5], [6], and Yeung and Yau [7]. In particular, Inouye
and Tanebe [4] proposed the multichannel super-exponential deflation method
(MSEDM) using second-order correlations. Martone [6], and Kawamoto, Kohno
and Inouye [8] proposed MSEDM’s using higher-order correlations for instanta-
neous mixtures or constant channel systems. Adaptive versions of multichannel
super-exponential algorithms are presented in [9].

In the present paper, we propose a new MSEDM using higher-order cor-
relations for convolutive mixtures or dynamical channel systems, and show the
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effectiveness of the proposed method by computer simulations. Adaptive versions
of proposed method will be appeared in a forthcoming paper.

The present paper uses the following notation: Let Z denote the set of all
integers. Let Cm×n denote the set of all m × n matrices with complex com-
ponents. The superscripts T , ∗, H and † denote, respectively, the transpose,
the complex conjugate, the complex conjugate transpose (Hermitian) and the
(Moore-Penrose) pseudoinverse operations of a matrix. Let i = 1, n stand for
i = 1, 2, · · · , n.

2 Assumptions and Preliminaries

We consider an MIMO channel system with n inputs and m outputs as described
by

y(t) =

∞X
k=−∞

H(k)s(t− k) + n(t), t ∈ Z, (1)

where
s(t) n-column vector of input (or source) signals,
y(t) m-column vector of channel outputs,
n(t) m-column vector of Gaussian noises,
H(k) m× n matrix of impulse responses.

The transfer function of the channel system is defined by

H(z) =

∞X
k=−∞

H(k)zk, z ∈ C. (2)

For the time being, it is assumed for theoretical analysis that the noise term
n(t) in (1) is absent.

To recover the source signals, we process the output signals by an n × m
equalizer (or deconvolver) W (z) described by

z(t) =
∞X

k=−∞
W (k)y(t− k), t ∈ Z. (3)

The objective of multichannel blind deconvolution is to construct an equalizer
that recovers the original source signals only from the measurements of the
corresponding outputs.

We put the following assumptions on the systems and the source signals.
A1) The transfer function H(z) is stable and has full column rank on the unit
circle |z| = 1 [ this implies that the unknown system has less inputs than out-
puts, i.e., n<m, and there exists a left stable inverse of the unknown system ].
A2) The input sequence {s(t)} is a complex, zero-mean, non-Gaussian random
vector process with element processes {si(t)}, i = 1, n being mutually indepen-
dent. Moreover, each element process {si(t)} is an i.i.d. process with a nonzero
variance σ2i and a nonzero fourth-order cumulant γi. The variances σ

2
i ’s and the

fourth-order cumulants γi’s are unknown.
A3) The equalizer W (z) is an FIR system of sufficient length L so that the
truncation effect can be ignored.
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Remark 1: As to A1), if the channel system H(z) is FIR, then a condition
of the existence of an FIR equalizer is rank H(z) = n for all nonzero z ∈ C
[10]. Moreover, if H(z) is irreducible, then there exists an equalizer W (z) of
length L<n(K − 1), where K is the length of the channel system [10]. Besides,
it is shown that there exists generically (or except for pathological cases) an

equalizerW (z) of length L<dn(K−1)m−n e, where dxe stands for the smallest integer
that is greater than equal to x.

Let us consider an FIR equalizer with the transfer function W (z) given by

W (z) =

L2X
k=L1

W (k)zk, (4)

where the length L:=L2 −L1 + 1 is taken to be sufficiently large. Let w̃i be the
Lm-column vector consisting of the tap coefficients (corresponding to the ith
output) of the equalizer defined by

w̃i :=
£
wT
i,1,w

T
i,2, · · · ,wT

i,m

¤T ∈ CmL, (5)

wi,j =
h
wi,j

(L1), wi,j
(L1+1), · · · , wi,j(L2)

iT
∈ CL, (6)

where wi,j
(k) is the (i, j)th element of matrix W (k).

Inouye and Tanebe [4] proposed themultichannel super-exponential algorithm
for finding the tap coefficient vectors w̃i’s of the equalizer W (z), of which each
iteration consists of the following two steps:

w̃
[1]
i = R̃

†
Ld̃i for i = 1, n, (7)

w̃
[2]
i =

w̃
[1]
iq

w̃
[1]H
i R̃Lw̃

[1]
i

for i = 1, n, (8)

where (·)[1] and (·)[2] stand respectively for the result of the first step and the
result of the second step. Let ỹ(t) be the Lm-column vector consisting of the L
consecutive inputs of the equalizer defined by

ỹ(t) :=
£
ȳ1(t)

T , ȳ2(t)
T , · · · , ȳm(t)T

¤T ∈ CmL, (9)

ȳi(t) := [yi(t− L1), yi(t− L1 − 1), · · · , yi(t− L2)]T ∈ CL, (10)

where yi(t) is the ith element of the output vector y(t) of the channel system in
(1). Then the correlation matrix R̃L is represented as

R̃L = E
h
ỹ∗(t)ỹT (t)

i
∈ CmL×mL, (11)

and the fourth-order cumulant vector d̃i is represented as

d̃i = E
h
|zi(t)|2zi(t)ỹ∗(t)

i
− 2E

h
|zi(t)|2

i
E [zi(t)ỹ

∗(t)]

− E £zi2(t)¤E [zi∗(t)ỹ∗(t)] ∈ CmL, (12)

where E[x] denotes the expectation of a random variable x. We note that the
last term can be ignored in case of E[si

2(t)]=0 for all i = 1, n, in which case
E[zi

2(t)]=0 for all i = 1, n.
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3 A Super-Exponential Deflation Method Incorporated
with Higher-Order Correlations

The MSEDM proposed by Inouye and Tanebe [4] uses second-order correlations
to estimate the contributions of an extracted source signal to the channel out-
puts. We utilize higher-order correlations instead of second-order correlations in
order to estimate the contributions of an extracted source signal to the channel
outputs. For notational simplicity, we confine ourselves to fourth-order correla-
tions although our results are expandable to higher-order correlations.

For the details of the method of second-order correlations, see the equations
from (55) through (58) in [4]. According to the discussions from (55) through (58)
in [4], we calculate the higher-order cross-correlations of the equalizer outputs
zi(t)’s with the channel outputs yk(t)’s, and define a possibly scaled and time-
shifted estimate of the channel element hk,ji(τ) as

ĥk,ji := cum(z
∗
i (t− τ ), z∗i (t− τ ), zi(t− τ), yk(t)). (13)

Then let us consider the contribution of zi(t) to the channel output yk(t) which
is defined by

ŷk,ji(τ ) :=
σ2ji
γji

X
τ

ĥk,ji(τ )zi(t− τ ), (14)

where
σ2ji
γji

is introduced to adjust the difference between the scale of the contri-

bution of zi(t) and the scale of the contribution of source sji(t) to the channel
output yk(t). Subtract the above contribution from the channel output y(t) as

y
(i)
k (t) := yk(t)− ŷk,ji(t), k = 1,m. (15)

Let us analyze the above method. After the first cycle of the iteration, the
first equalizer output z1(t) is a possibly scaled and time-shifted version of one
of the channel input, that is,

z1(t) = dsj1(t− k1), j1 ∈ {1, 2, · · · , n}, (16)

where |d| = 1/σj1 and k1 represents a delay-time, which may belong to the
interval [K + L1, L2] (see (28) for the derivation of the above relation), i.e.,

k1 ∈ [K + L1, L2], (17)

in the case when the channel H is an FIR system with {H(k)}K−10 , and the
equalizer W is an FIR system with {W (k)}L2k=L1 .
Since

cum(z∗i (t− τ ), z∗i (t− τ ), zi(t− τ ), yk(t))
= cum(z∗i (t), z

∗
i (t), zi(t), yk(t+ τ )). (18)

it follows from (13)(with i = 1) and (16)

ĥk.j1(τ) = cum(z
∗
1(t), z

∗
1(t), z1(t), yk(t+ τ))

=

nX
j=1

X
l

hk,j(l)cum(z
∗
1(t), z

∗
1(t), z1(t), sj(t+ i− l))
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= d∗2d
nX
j=1

X
l

hk,j(l)cum(s
∗
j1
(t− k1), s∗j1(t− k1), sj1(t− k1), sj(t+ τ − l))

= d∗2dhk,j1(k1 + τ )γj1 ,

which means

ĥk.j1(τ ) = |d|2d∗γj1hk,j1(k1 + τ). (19)

Substituting (16) and (19) into (14)(with i = 1) gives

ŷk,j1(t) =
σ2j1
γj1

X
τ

|d|4d∗γj1hk,j1(k1 + τ )sj1(t− τ − k1)

=
X
τ

hk,j1(k1 + τ )sj1(t− τ − k1)

=
X
τ

hk,j1(τ )sj1(t− τ). (20)

Thus, we obtain from (15)

y
(1)
k (t) = yk(t)− ŷk,j1(t)

=

nX
j=1

X
τ

hk,j(τ)sj(t− τ )−
X
τ

hk,j1(τ )sj1(t− τ)

=
X

j=1,j 6=j1
hk,j(τ )sj(t− τ ), (21)

which shows that y
(1)
k (t) does not contains the contribution of the source sj1(t).

As one of the advantages of the above method, we can reduce the computa-
tional loads for calculating (13) and (14) as follows: Using the definitions of ĥk,ji
and [di,j ]τ (see (13) and (44) in [4]), we have

ĥk,ji(τ) = [di,k]
∗
−τ , (22)

Therefore, (14) becomes

ŷk,ji(t) =
σ2ji
γji

X
τ

ĥk,jizi(t− τ)

=
σ2ji
γji

X
τ

[di,k]
∗
τzi(t+ τ)

=
σ2ji
γji

L2X
τ=L1

[di,k]
∗
τzi(t+ τ ). (23)

Thus, (15) becomes

y
(i)
k (t) = yk(t)−

σ2ji
γji

L2X
τ=L1

[di,k]
∗
τzi(t+ τ ), k = 1,m, (24)

where the coefficients [di,k]τ ’s are available at the first step (7) of the two-step
iteration.

Some remarks are given below on conditions for the indices L1 and L2 of the
equalizer. In the following discussion, we assume that delay-time k1 in (16) is
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known or estimated ahead. If follows from (19) and (22) that

hk,j1(τ + k1) =
1

α
ĥk,j1(τ ) =

1

α
[di,j ]

∗
−τ , (25)

where α = |d2|d∗γj1 . When the channel H is an FIR system with {H(k)}K−10

and the equalizer W is an FIR system with {W (k)}L2k=L1 , the support of the
function hk,j1(τ ) is the interval [0,K] and the support of the function [di,j ]τ
is the interval [L1, L2]. Here, given a function h(τ ) defined on Z, the subset
{τ ∈ Z : h(τ ) 6= 0} is called the support of the function h. Therefore, in order
for the sequence [di,j ]

∗−τ to determine the values of the sequence hk,j1(τ + k1)
based on (25), the support of hk,j1(τ + k1) should be included in the support of
[di,j]

∗
−τ , that is,

[−k1,−k1 +K] ⊂ [−L2,−L1], (26)

which implies

L1 ≤ k1 −K, L2 ≥ k1, (27)

or

k1 ∈ [L1 +K,L2]. (28)

Thus the first tap index L1 and the last tap index L2 of the equalizer are chosen
to satisfy the conditions

L1 ≤ k1 −K, (29)

L2 ≥ k1. (30)

4 Simulations

To demonstrate the effectiveness of the proposed method, many computer simu-
lations were conducted. We considered an MIMO channel system with two inputs
and three outputs, and assumed that the length of the channel is three (K = 3),

that is, H(k) in (1) was set to be

H(z) =

1.00 + 0.60z + 0.30z2 0.60 + 0.50z − 0.20z20.50− 0.10z + 0.20z2 0.30 + 0.40z + 0.50z2
0.70 + 0.10z + 0.40z2 0.10 + 0.20z + 0.10z2

 . (31)

The length of the equalizer was chosen to be twelve (L = 12). We set the values
of the tap coefficients to be zero except for w12(6) = w22(6) = 1. Two source
signals were the 4-PSK and the 8-PSK signals, respectively. Three independent
Gaussian noises (with identical variance σ2w) were added to the three outputs
yi(t)’s at various SNR levels. The SNR is defined as SNR:=10 log10(σ

2
i /σ

2
w),

where σ2i ’s are the variances of si(t)’s and are equal to one. As a measure of
performance, we use the multichannel intersymbol interference (MISI) defined in
the logarithmic (dB) scale by

MISI := 10 log10

"
nX
i=1

|Σn
j=1Σ

∞
t=−∞|gi,j(t)|2 − |gi,·|2max|

|gi,·|2max
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+
nX
j=1

|Σn
i=1Σ

∞
t=−∞|gi,j(t)|2 − |g·,j |2max|

|g·,j |2max

 , (32)

where |gi,·|2max and |g·,j |2max are respectively defined by
|gi,·|2max := max

j=1,2
|gi,j |2, |g·,j |2max := max

i=1,2
|gi,j |2. (33)

Fig. 1 shows the averages of performance results over 10 independent Monte
Carlo runs for the proposed method and the conventional method [4] in the
noiseless case when the time-duration is from zero to 30 (1000 iterations were
carried out in each time-duration). In each Monte Carlo run, R̃L was estimated
using 1,000 data samples. In each iteration of two steps (7) and (8), d̃i was
estimated using 1,000 data samples. It can be seen from Fig. 1 that our proposed
method is better than the conventional method about 7dB when the second
source signal is deconvolved.

Fig. 2 shows the averages of the performance results over 5 independent
Monte Carlo runs when the SNR level was taken to be 0[dB], 5[dB], 10[dB],
15[dB], 20[dB] and ∞[dB], respectively. It can be seen from Fig. 2 that our
proposed method is superior to the conventional method in the noiseless case,
and our proposed method works as well as the conventional method even when
the power of additive noise increases.

Fig. 1. Comparison between the proposed method and the conventional method (Noise-
less case)

5 Conclusions

We have proposed a new multichannel super-exponential deflation method us-
ing higher-order correlations instead of second-order correlations for estimating
the contributions of an extracted source signal to the channel outputs in order
to reduce the computational complexity and to accelerate the performance of
equalization. By computer simulations, it is shown that the method of using
fourth-order correlations is superior to the method of using second-order corre-
lations in a noiseless case or a noisy case.
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Fig. 2. Comparison between the proposed method and the conventional method (Noisy
case)
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