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Abstract

The multichannel blind deconvolution of finite-impulse response (FIR) or infinite-impulse response (IIR) systems is

investigated using the multichannel super-exponential deflation methods (MSEDMs). In the existing MSEDM, the

so-called ‘‘second-order correlation method’’ is incorporated in order to estimate the contributions of an extracted source

signal to the channel outputs. We propose a new MSEDM using higher-order correlations instead of second-order

correlations to reduce the computational complexity in terms of multiplications and to accelerate the performance of

deconvolution. Computer simulations show that the proposed method based on higher-order correlations is better than the

existing method based on second-order correlations in the noiseless case or a noisy case.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Multichannel blind deconvolution has recently
received attention in such fields as digital commu-
nications, image processing, acoustic signal proces-
sing and neural information processing [1,2].
e front matter r 2006 Elsevier B.V. All rights reserved
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In 1993, Shalvi and Weinstein proposed an
attractive approach to single-channel blind decon-
volution called the super-exponential methods

(SEMs) [3]. Extensions of their idea to multichannel
deconvolution were presented by Inouye and
Tanebe [4], Martone [5,6], and Yeung and Yau [7].
In particular, Inouye and Tanebe [4] proposed an
multichannel super-exponential deflation method
(MSEDM) using the second-order correlations.
Moreover, Martone [6], and Kohno et al. [8,9]
proposed MSEDMs using the higher-order correla-
tions for MIMO (multiinput–multioutput) narrow-
band channels (instantaneous mixtures). We extend
.
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their idea to the case of MIMO wide-band channels
(convolutive mixtures).

In the present paper, we propose a new MSEDM
using the higher-order correlations for MIMO wide-
band channels, and show the effectiveness of the
proposed method by computer simulations.

The present paper uses the following notation:
Let Z denote the set of all integers. Let Cm�n denote
the set of all m� n matrices with complex compo-
nents. The superscripts T; �;H and y denote,
respectively, the transpose, the complex conjugate,
the complex conjugate transpose (Hermitian) and
the (Moore–Penrose) pseudoinverse operations of a
matrix. Let i ¼ 1; n stand for i ¼ 1; 2; . . . ; n.

2. Assumptions and preliminaries

We consider an MIMO wide-band channel with n

inputs and m outputs as described by

yðtÞ ¼
X1

k¼�1

H ðkÞsðt� kÞ þ nðtÞ; t 2 Z, (1)

where sðtÞ is an n-column vector of input (or source)
signals, yðtÞ is an m-column vector of channel
outputs, nðtÞ is an m-column vector of Gaussian
noises, and fH ðkÞg is an m� n impulse response
matrix sequence.

The transfer function of the channel is defined by

HðzÞ ¼
X1

k¼�1

H ðkÞzk; z 2 C. (2)

To recover the source signals, we process the output
signals by an n�m deconvolver WðzÞ described by

zðtÞ ¼
X1

k¼�1

W ðkÞyðt� kÞ; t 2 Z. (3)

The objective of multichannel blind deconvolution
is to construct a deconvolver WðzÞ that recovers the
original source signals only from the measurements
of the corresponding outputs. For the time being, it
is assumed for theoretical analysis that the noise
term nðtÞ in (1) is absent. However, all the signals
and the parameters of the systems are allowed to be
complex-valued.

We put the following assumptions on the systems
and the source signals.

(A1) The transfer function HðzÞ is stable and has
full column rank on the unit circle jzj ¼ 1 (this
implies that the unknown system has less inputs
than outputs, i.e., npm, and there exists a left stable
inverse of the unknown system).
(A2) The input sequence fsðtÞg is a complex, zero-
mean, non-Gaussian random vector process with
element processes fsiðtÞg; i ¼ 1; n being mutually
independent. Moreover, each element process fsiðtÞg

is an i.i.d. process with a nonzero variance s2i and a
nonzero fourth-order cumulant gi. The variances
s2i ’s and the fourth-order cumulants gi’s are
unknown.

(A3) The deconvolver WðzÞ is an finite-impulse
response (FIR) system of sufficient length L so that
the truncation effect can be ignored.

Based on assumption A3, let us consider an
FIR deconvolver with the transfer function WðzÞ
given by

WðzÞ ¼
XL2

k¼L1

W ðkÞzk, (4)

where L1 and L2 are, respectively, the first and last
superscripted numbers of the tap coefficients W ðkÞ’s
of the deconvolver WðzÞ, and the length L:¼L2 �

L1 þ 1 is taken to be sufficiently large. Let ~wi be the
mL-column vector consisting of the tap coefficients
(corresponding to the ith output) of the deconvolver
defined by

~wi:¼½w
T
i;1;w

T
i;2; . . . ;w

T
i;m�

T 2 CmL, (5)

wi;j ¼ ½w
ðL1Þ

i;j ;wðL1þ1Þ
i;j ; . . . ;wðL2Þ

i;j �
T 2 CL, (6)

where w
ðkÞ
i;j is the ði; jÞth element of matrix W ðkÞ.

Inouye and Tanebe [4] proposed an multichannel

super-exponential algorithm (MSEA) for finding the
tap coefficient vectors ~wi’s of the deconvolver WðzÞ,
of which each iteration consists of the following two
steps:

~w½1�i ¼
~R
y

L
~d i for i ¼ 1; n, (7)

~w½2�i ¼
~w½1�iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~w½1�Hi
~RL ~w

½1�
i

q for i ¼ 1; n, (8)

where ð�Þ½1� and ð�Þ½2� stand, respectively, for the result
of the first step and the result of the second step. Let
~yðtÞ be the mL-column vector consisting of the L

consecutive inputs of the deconvolver defined by

~yðtÞ:¼½ȳ1ðtÞ
T; ȳ2ðtÞ

T; . . . ; ȳmðtÞ
T
�T 2 CmL, (9)

ȳiðtÞ:¼½yiðt� L1Þ; yiðt� L1 � 1Þ; . . . ; yiðt� L2Þ�
T

2 CL, ð10Þ

where yiðtÞ is the ith element of the output vector yðtÞ
of the channel in (1). Then the correlation matrix ~RL
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(defined by (41) and (42) in [4]) is represented as

~RL ¼ E½~y�ðtÞ~yTðtÞ� 2 CmL�mL, (11)

and the fourth-order cumulant vector ~d i is defined by

~d i:¼½d
T
i;1; d

T
i;2; . . . ; d

T
i;m�

T 2 CmL, (12)

whose jth block element d i;j is the L-column vector
with rth element ½di;j�r defined by

½di;j�r ¼ cumðziðtÞ; ziðtÞ; z
�
i ðtÞ; y

�
j ðt� rÞÞ

for r ¼ 0;�1;�2; . . . , ð13Þ

and ~d i is represented as

~d i ¼ E½jziðtÞj
2ziðtÞ~y

�ðtÞ�

� 2E½jziðtÞj
2�E½ziðtÞ~y

�ðtÞ�

� E½z2i ðtÞ�E½z
�
i ðtÞ~y

�ðtÞ� 2 CmL, ð14Þ

where E½x� denotes the expectation of a random
variable x. We note that the last term can be ignored
in case of E½s2i ðtÞ� ¼ 0 for all i ¼ 1; n, in which case
E½z2i ðtÞ� ¼ 0 for all i ¼ 1; n.
3. A super-exponential deflation method incorporated

with higher-order correlations

The multichannel super-exponential deflation

method (MSEDM) proposed by Inouye and Tanebe
[4] uses the second-order correlations to estimate the
contributions of an extracted source signal to the
channel outputs. In this section, we utilize higher-
order correlations instead of the second-order
correlations in order to estimate the contributions
of an extracted source signal to the channel outputs.
For notational simplicity, we confine ourselves to
fourth-order correlations although our results are
expandable to higher-order correlations.

Now, let us introduce n mL-column vectors as
intermediate tap coefficients vectors of the decon-
volver defined as

~ci:¼½c
T
i;1; c

T
i;2; . . . ; c

T
i;m�

T for i ¼ 1; n, (15)

ci;j:¼½c
ðL1Þ

i;j ; cðL1þ1Þ
i;j ; . . . ; cðL2Þ

i;j �
T. (16)

Then, the proposed algorithm is summarized as
follows.

Step 1: Set i ¼ 1 (where i denotes the order of an
input extracted).

Step 2: Carry out the following iterations enough
to extract an input after ~ci was initialized by its
appropriate value. Each of the iterations consists of
the two steps as follows:

~c½1�i ¼
~R
y

L
~d i, (17)

~c½2�i ¼
~c½1�iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~c½1�Hi
~RL ~c
½1�
i

q , (18)

where ~RL and ~d i are, respectively, calculated by (11)
and (14) using the values of the outputs ykðtÞ’s ðk ¼
1;mÞ and the values of the deconvolver outputs
ziðtÞ’s with w

ðkÞ
i;j ’s replaced by the corresponding

values of c
ðkÞ
i;j ’s obtained before the iteration.

Step 3: As a possibly scaled and time-shifted
estimate of an input sji

ðtÞ, calculate the deconvolver
output ziðtÞ by

ziðtÞ ¼
Xm

j¼1

X1

k¼�1

ci;jðkÞyjðt� kÞ, (19)

where ci;jðkÞ’s are the new values obtained at Step 2.
Then, calculate the fourth-order cross-correlations of
the deconvolver outputs ziðtÞ’s with the channel
outputs ykðtÞ’s, and define a possibly scaled and time-
shifted estimate of the channel element ĥk;ji

ðtÞ as

ĥk;ji
ðtÞ:¼cumðz�i ðt� tÞ; z�i ðt� tÞ; ziðt� tÞ; ykðtÞÞ.

(20)

Then, consider the reconstructed contribution of ziðtÞ

to the channel output ykðtÞ’s defined by

ŷk;ji
ðtÞ:¼

s4ji

gji

X1
t¼�1

ĥk;ji
ðtÞziðt� tÞ, (21)

where s2ji
=gji

is introduced to adjust the difference
between the scale of the contribution of ziðtÞ and the
scale of the contribution of source sji

ðtÞ to the
channel output ykðtÞ.

Step 4: Remove the above contributions from the
outputs ykðtÞ’s to define the outputs of a linear
system with m outputs and n� 1 inputs. These are
given by

y
ðiÞ
k ðtÞ:¼ykðtÞ � ŷk;ji

ðtÞ; k ¼ 1;m. (22)

Step 5: If ion, then set i ¼ i þ 1 and ykðtÞ ¼ y
ðiÞ
k ðtÞ

for k ¼ 1;m and go back to Step 2. If i ¼ n, then
stop here.

As an important remark on Step 2 in the above
algorithm, in the conventional MSEDM [4], the
second-order cross-correlations of ziðtÞ’s with the
channel outputs ykðtÞ’s are used and ĥk;ji

ðtÞ is
defined as

ĥk;ji
ðtÞ:¼E½ykðtÞz

�
i ðt� tÞ� for k ¼ 1;m. (23)
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In implementing above the algorithm, all the
expectations in (11) and (14) are replaced with their
samples averages over appropriate data records.

For the details of the derivation for calculating
the tap coefficients of the overall deconvolver WðzÞ
from the intermediate deconvolver CðzÞ, see Eqs.
(60) and (61) in [4].

Let us analyze the above method. After the first
cycle of the iteration, the first deconvolver output
z1ðtÞ is a possibly scaled and time-shifted version of
one of the channel input, that is,

z1ðtÞ ¼ rsj1 ðt� k1Þ; j1 2 f1; 2; . . . ; ng, (24)

where jrj ¼ 1=sj1 and k1 represents a delay-time,
which may belong to the interval ½K þ L1;L2� (see
(36) for the derivation of the above relation), i.e.,

k1 2 ½K þ L1;L2�, (25)

in the case when the channel H is an FIR system
with fH ðkÞgK�10 , and the deconvolver W is an FIR
system with fW ðkÞg

L2

k¼L1
. Since

cumðz�i ðt� tÞ; z�i ðt� tÞ; ziðt� tÞ; ykðtÞÞ

¼ cumðz�i ðtÞ; z
�
i ðtÞ; ziðtÞ; ykðtþ tÞÞ, ð26Þ

it follows from (20) (with i ¼ 1Þ and (24)

ĥk;j1 ðtÞ ¼ cumðz�1ðtÞ; z
�
1ðtÞ; z1ðtÞ; ykðtþ tÞÞ

¼
Xn

j¼1

X1

l¼�1

hk;jðlÞ cumðz
�
1ðtÞ; z

�
1ðtÞ; z1ðtÞ,

sjðtþ t� lÞÞ

¼ r�2r
Xn

j¼1

X1

l¼�1

hk;jðlÞ cumðs
�
j1
ðt� k1Þ,

s�j1 ðt� k1Þ; sj1ðt� k1Þ; sjðtþ t� lÞÞ

¼ r�2rhk;j1 ðk1 þ tÞgj1
, ð27Þ

which means

ĥk;j1 ðtÞ ¼ jrj
2r�gj1

hk;j1 ðk1 þ tÞ. (28)

Substituting (24) and (28) into (21) (with i ¼ 1Þ gives

ŷk;j1
ðtÞ ¼

s4j1
gj1

X1
t¼�1

jrj4gj1
hk;j1 ðk1 þ tÞsj1 ðt� t� k1Þ

¼
X1
t¼�1

hk;j1ðk1 þ tÞsj1 ðt� t� k1Þ

¼
X1
t¼�1

hk;j1ðtÞsj1 ðt� tÞ. ð29Þ
Thus, we obtain from (22)

y
ð1Þ
k ðtÞ ¼ ykðtÞ � ŷk;j1

ðtÞ

¼
Xn

j¼1

X1
t¼�1

hk;jðtÞsjðt� tÞ �
X1
t¼�1

hk;j1ðtÞsj1ðt� tÞ

¼
Xn

j¼1;jaj1

X1
t¼�1

hk;jðtÞsjðt� tÞ, ð30Þ

which shows that y
ð1Þ
k ðtÞ does not contain the

contribution of the source sj1 ðtÞ.
As one of the advantages of the above method,

we can reduce the computational loads for calculat-
ing (20) and (21) as follows: Using the definitions of
ĥk;ji

and ½di;j�t (see (20) and (13)), we have

ĥk;ji
ðtÞ ¼ ½di;k�

�
�t. (31)

Therefore, (21) becomes

ŷk;ji
ðtÞ ¼

s4ji

gji

X1
t¼�1

ĥk;ji
ðtÞziðt� tÞ

¼
s4ji

gji

XL2

t¼L1

½di;k�
�
tziðtþ tÞ, ð32Þ

where the coefficients ½di;k�t’s are available at the
first step (17) of the two-step iteration (17) and (18).
This is a novel key point of our proposed method.

Some remarks are given below on conditions for
the indices L1 and L2 of the deconvolver. In the
following discussion, we assume that delay-time k1

in (24) is known or estimated ahead. It follows from
(28) and (31) that

hk;j1 ðtþ k1Þ ¼
1

a
ĥk;j1ðtÞ ¼

1

a
½di;j�

�
�t, (33)

where a ¼ jr2jr�gj1
. When the channel H is an FIR

system with fH ðkÞgK�10 and the deconvolver W is an
FIR system with fW ðkÞg

L2

k¼L1
, the support of the

function hk;j1 ðtÞ is the interval ½0;K � and the support
of the function ½di;k�t is the interval ½L1;L2�. Here,
given a function hðtÞ defined on Z, the subset ft 2
Z : hðtÞa0g is called the support of the function h.
Therefore, in order for the sequence ½di;k�

�
�t to

determine the values of the sequence hk;j1 ðtþ k1Þ

based on (33), the support of hk;j1 ðtþ k1Þ should be
included in the support of ½di;k�

�
�t, that is,

½�k1;�k1 þ K � � ½�L2;�L1�, (34)

which implies

L1pk1 � K ; L2Xk1, (35)

or

k1 2 ½L1 þ K ;L2�. (36)
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Thus the first tap index L1 and the last tap index L2

of the deconvolver are chosen to satisfy the
conditions

L1pk1 � K , (37)

L2Xk1. (38)
4. Simulations

To demonstrate the effectiveness of proposed
method, some computer simulations were con-
ducted. We considered an MIMO channel HðzÞ
with two inputs and three outputs which is defined
below by (39). HðzÞ was assumed that its length is
three ðK ¼ 3Þ.

HðzÞ ¼
X2

k¼0

H ðkÞzk

¼

1:00þ 0:15zþ 0:10z2 0:65þ 0:25zþ 0:15z2

0:50� 0:10zþ 0:20z2 1:00þ 0:25zþ 0:10z2

0:60þ 0:10zþ 0:40z2 0:10þ 0:20zþ 0:10z2

2
664

3
775.

ð39Þ

The length of the deconvolver was chosen to be six
ðL ¼ 6Þ for HðzÞ [13,14]. We set the values of tap
coefficients of c1ðzÞ to be zero except for c

ð3Þ
11 ¼ 1 in

case of i ¼ 1, and those of c2ðzÞ to be zero except for
c
ð3Þ
22 ¼ 1 in case of i ¼ 2. Two source signals were
chosen to be 4-PSK and 8-PSK signals, respectively
(see Fig. 2(a) and (b)). Three independent Gaussian
noises (with identical variance s2wÞ were added to the
three outputs yiðtÞ’s at various SNR levels. The
SNR is defined as SNR:¼10 log10 ðs

2
i =s

2
wÞ, where

s2i ’s are the variances of siðtÞ’s and are equal to one.
As a measure of performance, we use the MIMO
intersymbol interference ðMISIÞ [8].

First we considered the noiseless case, i.e., the
case at SNR ¼ 1dB. Table 1 shows the averages of
the performance results over 10 independent Monte
Carlo runs for the two methods, the proposed
method and the existing MSEDM incorporated
Table 1

Comparison of the performances of the two methods in the

noiseless case

Method MISI (dB)

The existing MSEDM �18.67

The proposed method �20.00
with second-order correlations [4] in this case. In
each Monte Carlo run, ~RL was estimated using
20,000 data samples and we set the number of
iterations of (17) and (18) in Step 2 to be eight. In
each iteration of two steps (17) and (18), ~d i was also
estimated using 20,000 data samples. It can be seen
from Table 1 that our proposed method is superior
to the existing MSEDM in performance by about
1 dB when the second source signal is recovered.
Fig. 1 shows the signal constellations for the
proposed method in this case. It can be seen from
Fig. 1 that two source signals are recovered.

Secondly we considered noisy cases, i.e., the cases
at SNR ¼ 0, 5, 10, 15, 20 and 1dB, respectively.
Fig. 2 shows the averages of the performance results
over the 10 independent Monte Carlo runs in these
cases. It can be seen from Fig. 2 that the proposed
method is superior in performance to the existing
MSEDM even if the power of additive noise
increases.

The most important advantage of the proposed
method is that there is no necessity of the
calculations of the higher-order cross-correlations
ĥk;ji
ðtÞ shown in (20). In the existing MSEDM, the

second-order cross-correlations ĥk;ji
ðtÞ should be

calculated by (23). Therefore, we can reduce the
computational loads for calculating ĥk;ji

ðtÞ. This is
illustrated numerically below.

Table 2 shows the averages of the numbers
of floating point operations (flops) per a Monte
Carlo run over 10 independent Monte Carlo
runs obtained by using the built-in function ‘‘flops’’
in MTLAB Version 5.2. Table 3 shows the averages
of execution times per a Monte Carlo run over
10 independent Monte Carlo runs on a PC with
an 3.2GHz processor and 1GB main memories
used for simulations. In each Monte Carlo run,
we set the number of iterations of (17) and (18)
to be one.

It can be seen from Tables 2 and 3 that the
number of floating point operations and the
execution times for the proposed method are better
than the existing MSEDM at about 1.6% and
7%, respectively. Besides, we consider that one of
reasons why the proposed method is superior to the
existing MSEDM in performance by about 1 dB for
the noiseless case is that the computational errors
corresponding to the methods might decrease as
their computational loads decrease.

Thirdly we compared the proposed method in
performance with another method, the eigenvector
algorithm (EVA) [10–12] using the same deflation
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Fig. 1. Signal constellations of channel inputs (a) s1ðtÞ, (b) s2ðtÞ, channel outputs (c) y1ðtÞ, (d) y2ðtÞ, (e) y3ðtÞ, and deconvolver outputs (f)

z1ðtÞ, (g) z2ðtÞ.

Fig. 2. Comparison of the performances of the two methods in

the noisy cases.

Table 2

Comparison of the numbers of floating point operations of the

two methods in the noiseless case

Method The number of flops

The existing MSEDM 3:0834� 108

The proposed method 3:0340� 108

Table 3

Comparison of the execution times of the two methods in the

noiseless case

Method Execution time (s)

The existing MSEDM 49.38

The proposed method 45.88

K. Kohno et al. / Signal Processing 86 (2006) 3505–35123510
method in [4] for the extraction of all the sources.
Fig. 3 shows the average of the performance results
over 10 Monte Carlo runs for the proposed method
and the EVA in the six cases, the same cases as
Fig. 2. Tables 4 and 5 show the average of the
numbers of floating point operations (flops) and the
average of execution times per a Monte Carlo run
over 10 independent Monte Carlo runs.
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Fig. 3. Comparison of the performances of the proposed method

and the EVA in the noisy cases.

Table 4

Comparison of the numbers of floating point operations of the

proposed method and the EVA in the noiseless case

Method The number of flops

The EVA 10:5273� 108

The proposed method 3:0340� 108

Table 5

Comparison of the execution times of the proposed method and

the EVA in the noiseless case

Method Execution time (s)

The EVA 61.12

The proposed method 45.88

Fig. 4. Comparison of the performances of the proposed method

by changing the number of data samples in the noisy cases.

K. Kohno et al. / Signal Processing 86 (2006) 3505–3512 3511
It can be seen from Fig. 3 that the proposed
method is superior in performance to the EVA by
about 8 dB for the noiseless case and even if the
power of additive noise increases. Besides, it can be
seen from Tables 4 and 5 that the number of floating
point operations and the execution times for the
proposed method are better than the EVA at about
71% and 25%, respectively. According to these
results, we conclude that the proposed super-
exponential algorithm is effective more than the
eigenvector algorithm using the deflation method.

We investigated the performance of the proposed
method by changing the number of data samples.
Fig. 4 shows the averages of the performance results
of the proposed method (over 10 independent
Monte Carlo runs) using 20,000, 2000 and 500 data
samples, respectively. It can be seen from Fig. 4 that
the accuracy of performance increases as the
number of data samples increases.
5. Conclusions

We have proposed a new multichannel super-
exponential deflation method using higher-order
correlations instead of second-order correlations for
estimating the contributions of an extracted source
signal to the channel outputs in order to reduce the
computational complexity and to accelerate the
performance of deconvolution. By computer simu-
lations, it has been shown that the method
incorporated with fourth-order correlations is
superior in performance to the two methods, the
existing MSEDM incorporated with second-order
correlations and the EVA, in the noiseless case and
noisy cases.
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