
An Adaptive Super-Exponential Deflation Algorithm for Blind
Deconvolution of MIMO Systems Using the QR-factorization of

Matrix Algebra

Kiyotaka Kohno1, Yujiro Inouye2, Mitsuru Kawamoto3 and Tetsuya Okamoto4
1,2,3,4Department of Electronic and Control Systems Engineering, Shimane University

1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
3Bio-Mimetic Control Research Center, RIKEN, Moriyama, Nagoya 463-003, Japan
1kohno@yonago-k.ac.jp, 2inouye@riko.shimane-u.ac.jp, 3kawa@ecs.shimane-u.ac.jp

Abstract–The multichannel blind deconvolution

of finite-impulse response (FIR) or infinite-impulse

response (IIR) systems is investigated using the

multichannel super-exponential deflation methods.

We propose a new adaptive approach to the mul-

tichannel super-exponential deflation methods us-

ing the QR-factorization of matrix algebra and the

higher-order cross correlations of the (channel) sys-

tem and equalizer outputs. In order to see the ef-

fectiveness of the proposed approach, many com-

puter simulations are carried out for time-invariant

MIMO systems along with time-variant MIMO sys-

tems. It is shown through computer simulations

that the proposed approach is e ective for time-

invariant systems, but is not so e ective for time-

variant systems as we expected in advance.

I. Introduction

Multichannel blind deconvolution has recently re-

ceived attention in such fields as digital communica-
tions, image processing and neural information process-

ing [1],[2].

Recently, Shalvi and Weinstein proposed an at-

tractive approach to single-channel blind deconvolu-

tion called the super-exponential method (SEM) [3].

Extensions of their idea to multichannel deconvolu-

tion were presented by Inouye and Tanebe [4], Mar-

tone [5], [6], and Yeung and Yau [7]. In particu-

lar, Inouye and Tanebe [4] proposed the multichan-

nel super-exponential deflation method (MSEDM) us-
ing the second-order correlations. Martone [6], and

Kawamoto, Kohno and Inouye [8] proposed MSEDM’s

using the higher-order correlations for instantaneous

mixtures or constant channel systems. Kohno, In-

ouye and Kawamoto [10] proposed MSEDM using the

higher-order correlations for convolutive mixtures or

dynamical channel systems. In the meantime, Kohno,

Inouye, Kawamoto and Okamoto proposed two type

of adaptive multichannel super-exponential algorithms

(AMSEA’s), the one in covariance (correlation or

Kalman-filter) form and the other in QR-factorization

form, for the degenerate rank case of the correlations

matrices [9].

In the present paper, we propose an adaptive

multichannel super-exponential deflation algorithm

(AMSEDA) using the QR-factorization and the higher-

order correlations for convolutive mixtures or dynami-

cal channel systems, and show the e ectiveness of the

proposed method by computer simulations. Another

AMSEDA using the covariance form will be appeared

in a forthcoming paper.

The present paper uses the following notation: Let Z

denote the set of all integers. Let Cm×n denote the set
of all m × n matrices with complex components. The
superscripts T , , H and † denote, respectively, the
transpose, the complex conjugate, the complex con-

jugate transpose (Hermitian) and the (Moore-Penrose)

pseudoinverse operations of a matrix. Let i= 1, n stand

for i = 1, 2, · · · , n.

II. Assumptions and Preliminaries

We consider an MIMO channel system with n inputs

and m outputs as described by

y(t) =
X
k=

H(k)s(t k), t Z, (1)

where

s(t) n-column vector of input (or source) signals,

y(t) m-column vector of channel outputs,

H(k) m× n matrix of impulse responses.
The transfer function of the channel system is defined
by

H(z) =
X
k=

H(k)zk, z C. (2)

For the time being, it is assumed for theoretical analysis

that the noise is absent in (1).

To recover the source signals, we process the output

signals by an n × m equalizer (or deconvolver) W (z)

described by

z(t) =
X
k=

W (k)y(t k), t Z. (3)

The objective of multichannel blind deconvolution

is to construct an equalizer that recovers the original

source signals only from the measurements of the cor-

responding outputs.

We put the following assumptions on the systems and

the source signals.

A1) The transfer function H(z) is stable and has full
column rank on the unit circle |z| = 1 [ this implies

that the unknown system has less inputs than outputs,

i.e., n<m, and there exists a left stable inverse of the

unknown system ].

A2) The input sequence {s(t)} is a complex, zero-
mean, non-Gaussian random vector process with ele-



ment processes {si(t)}, i = 1, n being mutually inde-

pendent. Moreover, each element process {si(t)} is an
i.i.d. process with a nonzero variance 2

i and a nonzero

fourth-order cumulant i. The variances
2
i ’s and the

fourth-order cumulants i’s are unknown.

A3) The equalizerW (z) is an FIR system of su cient

length L so that the truncation e ect can be ignored.

Remark 1: As to A1), if the channel system H(z)
is FIR, then a condition of the existence of an FIR

equalizer is rank H(z) = n for all nonzero z C [11].

Moreover, if H(z) is irreducible, then there exists an
equalizerW (z) of length L<n(K 1), where K is the

length of the channel system [11]. Besides, it is shown

that there exists generically (or except for pathological

cases) an equalizerW (z) of length L<dn(K 1)
m n

e, where
dxe stands for the smallest integer that is greater than
equal to x.

Let us consider an FIR equalizer with the transfer

function W (z) given by

W (z) =

L2X
k=L1

W (k)zk, (4)

where the length L:=L2 L1 + 1 is taken to be suf-

ficiently large. Let w̃i be the Lm-column vector con-

sisting of the tap coe cients (corresponding to the ith

output) of the equalizer defined by

w̃i :=
£
wT
i,1,w

T
i,2, · · · ,wT

i,m

¤T
CmL, (5)

wi,j =
h
wi,j

(L1), wi,j
(L1+1), · · · , wi,j(L2)

iT
CL,

(6)

where wi,j
(k) is the (i, j)th element of matrix W (k).

Inouye and Tanebe [4] proposed the multichannel
super-exponential algorithm for finding the tap coe -

cient vectors w̃i’s of the equalizerW (z), of which each

iteration consists of the following two steps:

w̃
[1]
i = R̃

†
Ld̃i for i = 1, n, (7)

w̃
[2]
i =

w̃
[1]
iq

w̃
[1]H
i R̃Lw̃

[1]
i

for i = 1, n, (8)

where (·)[1] and (·)[2] stand respectively for the result
of the first step and the result of the second step. Let
ỹ(t) be the Lm-column vector consisting of the L con-
secutive inputs of the equalizer defined by

ỹ(t) :=
£
ȳ1(t)

T , ȳ2(t)
T , · · · , ȳm(t)T

¤T
CmL, (9)

ȳi(t) := [yi(t L1), yi(t L1 1), · · · , yi(t L2)]
T

CL, (10)

where yi(t) is the ith element of the output vector y(t)
of the channel system in (1). Then the correlation ma-

trix R̃L is represented as

R̃L = E
h
ỹ (t)ỹT (t)

i
CmL×mL, (11)

and the fourth-order cumulant vector d̃i is represented
as

d̃i = E
h
|zi(t)|2zi(t)ỹ (t)

i
2E
h
|zi(t)|2

i
E [zi(t)ỹ (t)]

E
£
zi
2(t)

¤
E [zi (t)ỹ (t)] CmL, (12)

where E[x] denotes the expectation of a random vari-

able x. We note that the last term can be ignored

in case of E[si
2(t)]=0 for all i = 1, n, in which case

E[zi
2(t)]=0 for all i = 1, n.

III. The Adaptive Super-Exponential

Algorithm Using the QR-factorization

Kohno, Inouye, Kawamoto and Okamoto proposed

two types of AMSEA’s, the one in covariance (cor-

relation or Kalman-filter) form and the other in QR-

factorization form, for the degenerate rank case of the

correlations matrices [9]. Except for the case when the

number of outputs equals the number of inputs, i.e.,

m = n, the correlation matrix R̃L is not of full rank.

Situations with the number of independent sources (or

inputs) being strictly less than the number of sensors

(or outputs) are often encountered in various applica-

tions such as digital communication, image processing

and neural information processing. Moreover, if the un-

derlying channel system exhibits slow changes in time,

processing all the available data jointly is not desir-

able, even if we can accommodate the computational

and storage loads of the batch algorithm in (7) and

(8), because di erent data segments correspond to dif-

ferent channel responses. In such a case, we want to

have an adaptive algorithm which is capable of tracking

the varying characteristics of the channel system.

Consider the batch algorithm in (7) and (8). The

equation (8) constraints the length of vector w̃i to

equal one, and thus we assume this constraint is al-

ways satisfied using a normalization or an automatic
gain control (AGC) of w̃i at each time t. To develop

an adaptive version of (7), we must specify the depen-

dency of each time t and rewrite (7) as

w̃i(t) = R̃
†
L(t)d̃i(t) , i = 1, n. (13)

Here the subscript L of R̃L(t) is omitted for simplicity

hereafter. The recursions for time-updating of matrix

R̃(t) and vector d̃i(t) in (13) are given as
R̃(t) = R̃(t 1) + (1 )ỹ (t)ỹT (t), (14)

d̃i(t) = d̃i(t 1) + (1 )ỹ (t)z̃i(t), (15)

where

z̃i(t) := (|zi(t)|2 2 < |zi(t)|2 >)zi(t) < z2i (t) > zi (t).

(16)

Here < |zi(t)|2 > and < z2i (t) > denote respectively the
estimates of E

£|zi(t)|2¤ and E £zi(t)2¤ at time t, is

a positive constant close to, but less than one, which

accounts for some exponential weighting factor or for-

getting factor [13].

The AMSEA using the QR-factorization is introduced

on the basis of the following lemma, the so-called QR-

factorization of a general matrix A.

Lemma 1 [12],[14]: Given an n × n Hermitian A
Cn×n. Let r be a chosen integer satisfying | r| >
| r+1|, where the eigenvalues 1, 2,· · ·, n of A are

arranged in decreasing order of magnitude. Given an

n× r matrix Q0 with orthonormal columns and gener-

ate a sequence of matrices {Qk} Cn×r as follows:
Zk = AQk 1, (17)



QkRk = Zk : QR-factorization, (18)

where Qk Cn×r is a matrix with orthonormal

columns and Rk Cr×r is an upper triangular matrix.
If Q0 is not unfortunately chosen, then the sequence

{Qk} converges to a matrix of r dominant eigenvectors,
and the upper triangular sequence {Rk} converges the
diagonal matrix of r dominant eigenvalues.

By applying Lemma 1 for calculating the pseudoin-

verse of R̃(t), we have the following theorem which

gives an adaptive solution w̃i(t) of (13) from Qr(t 1),

Qr(t 2), d̃i(t 1), ỹ(t) and zi(t) (where, for exam-
ple, Qr(t 1) CmL×r represents approximately r
dominants eigenvectors of mL×mL matrix R̃(t 1)).

Theorem 1: Let r be fixed as r = nL, where n is

the number of the inputs of the channel system in (1)

and L is the length of the equalizer in (4). Then an

adaptive solution w̃i(t) of (13) is

w̃i(t) = Qr(t 1)R 1
r (t)QH

r (t)d̃i(t), (19)

where Qr(t) and Rr(t) are obtained by the QR de-

composition of matrix Z(t) defined by Z(t) := R̃(t)
Qr(t 1), which is decomposed as

Z(t) = Qr(t)Rr(t) CmL×r,
Qr(t) CmL×r, Rr(t) Cr×r, (20)

and the update of Z(t) is
Z(t) = 1Z(t 1)QH

r (t 2)Qr(t 1)

+ (1 1)ỹ (t)ỹ
T (t)Qr(t 1). (21)

The update of d̃i(t) is
d̃i(t) = 2d̃i(t 1) + (1 2)ỹ (t)z̃i(t), (22)

where

z̃i(t) := (|zi(t)|2 2 < |zi(t)|2 >)zi(t) < z2i (t) > zi (t),

(23)

< |zi(t)|2 >= < |zi(t 1)|2 > +(1 )|zi(t)|2, (24)
< z2i (t) >= < z2i (t 1) > +(1 )z2i (t). (25)

Here 1 and 2 are positive constants close to, but

less than one, which accounts for some exponential

weighting factor or forgetting factor [13]. The is a

positive constant less than 1 and 2. These equations

are initialized by their values appropriately selected or

calculated by the batch algorithm in (7) and (8) at an

initial time t0 and used for t = t0 + 1, t0 + 2, · · · .

IV. The Adaptive Super-Exponential

Deflation Algorithm Using the

QR-factorization

The MSEDM proposed by Inouye and Tanebe [4] uses

the second-order correlations to estimate the contri-

butions of an extracted source signal to the channel

outputs. Kohno, Inouye and Kawamoto [10] proposed

MSEDM using the higher-order correlations instead of

the second-order correlations to reduce the computa-

tional complexity in terms of multiplications and to

accelerate the performance of equalization. For the

details of the MSEDM using the higher-order correla-

tions, see the equations from (13) through (30) in [10].

In the present paper, we proposed a new AMSEDA

which combines the MSEDM using the higher-order

correlations with the adaptive algorithm using the QR-

factorization form described in the previous chapter.

In our new AMSEDA, the following procedures are

carried out in each time when channel outputs are ob-

served.

Before the following procedures are carried out, it is

necessary that R̃, Qr, d̃i and w̃i are initialized.

At first, set t = t0, and set l = 1 where l denotes the
number of channels (or the sources) equalized.

Then, Z(t) is calculated by (21), d̃1(t) is calculated
by using from (22) to (25), and w̃1(t) is calculated by

the two steps (19) and (8). By these procedures, the

first equalized output z1(t) is obtained.

Next, the MSEDM using the higher-order correla-

tions is carried out. We calculate the contribution sig-

nals by using the equalized output z1(t), and remove

the contribution signals from the channel outputs in or-

der to define the outputs of a multichannel system with
n 1 inputs and m outputs. The number of inputs

becomes deflated by one. The procedures mentioned
above are continued until l = n, where we obtain the

last equalized output zn(t) for t = t0. If t < tf (where

tf is a final time), then set t = t0 + 1 and iterate the

same procedures as the previous time t. If t = tf , then

stop here. The n equalized outputs z1(t), · · · , zn(t)
are obtained for t = t0, t0 + 1, · · · , tf .
Therefore, the proposed algorithm is summarized as

shown in Table 1.

Table 1. The proposed algorithm.

Step Contents

1 Set t = t0 (where t0 is an initial time).
2 Set l = 1 (where l denotes the number of the

channels equalized).

3 Calculate the QR-factorization of Z(t) using (21).

4 Calculate d̃l(t) using from (22) through (25).

5 Calculate w̃l(t) using (19) and (8).
6 Carry out the deflationary process using the

MSEDM with the higher-order correlations [10].

7 If the subscript l is less than n, then set
l = l + 1, and the procedures (from Step 3

through Step 6) are continued until l = n.
8 If t < tf (where tf is a final time), then set

t = t+ 1 and iterate the procedures from
Step 2 through Step 7. If t = tf , then stop here.

V. Simulations

To demonstrate the e ectiveness of proposed method,

some computer simulations were conducted. We con-

sidered an MIMO channel system with two inputs and

three outputs, and assumed that the length of channel

is three (K = 3), that is H(k) in (1) was set to be

H(z) =
1.00 + 0.15z + 0.10z2 0.65 + 0.25z + 0.15z2

0.50 0.10z + 0.20z2 1.00 + 0.25z + 0.10z2

0.60 + 0.10z + 0.40z2 0.10 + 0.20z + 0.10z2
.(26)

The length of equalizer was chosen to be seven (L=7).

We set the values of the tap coe cients to be zero ex-

pect for w12(4) = w21(4) = 1. Two source signals were

4-PSK and 8-PSK signals, respectively. For recover-

ing first source signal, the initial values of R̃ and d̃i



Fig. 1. Performance of the proposed algorithm for the non-

adaptive model.

Fig. 2. Performance of the proposed algorithm for the adaptive

model.

were estimated using 5,000 data samples. For recov-

ering second source signal, the initial value of R̃ was

set the identity matrix I and Qr(0) was set the matrix

[I, 0]T . The values of 1, 2 and were chosen as

1 = 0.999, 2 = 0.99999 and = 0.05, respectively.

Besides, we used the fourth-order correlation method

for subtracting the contributions of an extracted source

signal to the channel outputs. As a measure of perfor-

mance, we use the multichannel intersymbol interfer-

ence (MISI) defined in the logarithmic (dB) scale by
MISI :=

10 log10

"
nX
i=1

| n
j=1 t= |gij(t)|2 |gi·|2max|

|gi·|2max

+

nX
j=1

| n
i=1 t= |gij(t)|2 |g·j |2max|

|g·j |2max
, (27)

where |gi·|2max and |g·j |2maxare respectively defined by
|gi·(·)|2max := Maxj=1,···,nMax <t< |gij(t)|2 (28)

|g·j(·)|2max := Maxi=1,···,nMax <t< |gij(t)|2 (29)

Fig. 1 shows MISI of the performance results for the

time-invariant channel system obtained by using 10,000

data samples. It can be seen from Fig. 1 that our

proposed method quickly deconvolved all source signals

and it is e ective for the time-invariant channel system.

Fig. 2 shows MISI of the performance results for the

time-variant channel system obtained by using 12,000

data samples. The last matrix H(2) of the impulse

response of the channel was varied by adding 0.3 to all

its elements at discrete time t=3,000. It can be seen

from Fig. 2 that our proposed method is not so e ective

as we expected earlier for the time-variant system.

VI. Conclusions

We have considered the problem of adaptive mul-

tichannel blind deconvolution based on the super-

exponential algorithms using deflation methods pro-
posed by Inouye and Tanebe [4]. In this paper, we

proposed a new approach to the adaptive multichan-

nel deflationary blind deconvolution using the QR-

factorization and the higher-order correlations. In or-

der to see the e ectiveness of the proposed approach,

we have considered computer simulations for two types

of MIMO systems, that is, the first one is time-invariant
and the second one is time-variant. It has been shown

through computer simulations that the proposed ap-

proach is e ective for time-invariant systems, but is not

so e ective for time-variant systems as we expected be-

forehand. One of reasons why it is not so e ective for

time-variant systems is that the values of d̃i(t) in (22)
change after the channel characteristic varies. These

changes make the proposed algorithm unstable. In or-

der to suppress these changes to be small, it is necessary

to choose appropriately the value of 2 in (22) or to in-

troduce additional terms d̃i(t k)’s (where k = 2,M)

in the right-hand side of (22). To circumvent this is-

sue, another AMSEDA using the covariance form will

be developed in a forthcoming paper.
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