星取県の天体観測用分光器

TORIHIME

操作マニュアル(Ver.0.1)

2024年2月15日

米子高専科学部

目次

1. TORIHIME について

1.1 TORIHIME の構造

1.2 直視分光器にする場合

- 1.3 スペクトルを撮像する場合
- 2. 観測方法
 - 2.1 TORIHIME の操作
 - 2.2 スペクトルの撮像
 - 2.3 波長較正用光源の撮像
- 3. 解析方法
 - 3.1 波長較正
 - 3.2 波長感度補正

4. 付録

4.1 分光標準星一覧表

1. TORIHIME について

星取県の天体観測用分光器「TORIHIME」は、鳥取県教育委員会の令和5年度「とっとり夢プロ ジェクト事業補助金」の交付を受けて、米子高専科学部が製作した分光器であり、以下の特徴を 持っている.

- ・アマチュア天文家が簡単に自作できるよう,既製品を多用し,必要な工作の工程を最小限にと どめたこと.
- ・アマチュア天文家にとって自作が極めて困難であったスリットビュワーを0次のスペクトルを 利用することで簡単に実現したこと.
- ・電子回路を搭載し、0次と1次のスペクトルの切換をコンピュータ制御にしたこと.
- ・4000Åから8000Åまでの可視光線を一度に撮像できる低分散分光器でありながらナトリウムの D線を2本に分解する高分解能を実現したこと.

以上の特徴により、TORIHIME はアマチュア天文家でも自作可能な分光器でありながら、実際の 分光観測では従来の低分散分光器では不可能と言われていた「銀河回転の検出」や散光星雲の電 子密度や電子温度などを測定する「分光診断」が可能になると考えられる.

なお,本分光器はあくまで太陽以外の天体を想定して設計しているので,太陽光の入射は厳禁 である.

1.1TORIHIMEの構造

図 1.1.1 に TORIHIME の外観と分解図を示す.

TORIHIME はビクセンのフリップミラーを改造したものに回折格子を収め、これに回転機構と駆動用のステッピングモーターを取付け、制御用電子回路を搭載した部分を心臓部としている. さらに、ビクセンの接眼鏡 NLP40 mmの外径がフリップミラーの内ネジの径と同じであることからこれにネジを切り、コリメーターレンズやカメラレンズとして利用し、ボーグのヘリコイドを合焦装置とした*.(※コリメーターレンズ用のボーグのヘリコイドはスリットにピントが合うように調節済みなので、調節厳禁である.)また、ZWOの電動フィルターホイール(以下 EFW)にスリットなどを収め、あとは、ボーグの接続環などでこれらと望遠鏡や CCD カメラを接続したものである.

図1.1.2 ZWOのEFWでのスリットなどの配置

次に、図1.1.2にZWOのEFW内でのスリットなどの配置を示す.

・EFW1:スリットビュワー

- EFW2:250μmスリット
- EFW3:75μmスリット
- EFW4:30μmスリット
- EFW5:15μmスリット

なお,スリットはカッターナイフの刃を向かい合わせて,金属板に接着することで製作しており,一番狭いスリット幅は15μmである.このスリットを用いると分光器の分解能は約1200となり,ナトリウムのD線(5895.92,5889.95Å)を2本に分解することができる.

1.2 直視分光器として使用する場合

米子市児童文化センターの観望会で直接スペクトルを見せる場合もあると考えられる. その場 合は図 1.2.1 のように接眼鏡アダプタを TORIHIME に取りつけて観望する.

図1.2.1 左: 接眼鏡アダプタ 右: TORIHIME にアダプタを取りつけた写真

1.3スペクトルを撮像する場合

米子市児童文化センターの ZWO ASI 6200MM Pro でスペクトルを撮像する場合は図 1.2.1 の 接眼鏡の代わりに 6200MM を TORIHIME に取りつけて接続する. なお、この時のノーズピース はスペクトル撮像用に短く切断したものを使用する.

2. 観測方法

2. 1 TORIHIME の操作

本分光器の特徴は回折格子を回転させることで0次と1次のスペクトルを使い分けることにある. すなわち,0次のスペクトルをスリットビュワーに利用して観測天体を視野内に導入し,1次のスペクトルでそのスペクトル撮像を行う.

Congle Chicane W2	20194 ORIHADE365177	ORIHIME 動作ソフトを起動する	
bilerocuit Talge	₩ 92054/(-1) Bolos	i i i i i i i i i i i i i i i i i i i	
Vinclusioner unitation X-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7	ASIStatio POInterflade	LAVIE	3-1
Zoum Sich Kronka P Krup 20 Reg N	ESCA22 Conscientions		
RegiStax St StXES RegiStax St StXES ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・			∧ (2; < < < < < < < < < < < < < < < < < < <

図 2.1.1 ORIHIME 動作ソフトの起動

図2.1.2 0次か1次スペクトルの切り換え

そこで,最初に0次と1次スペクトルの切り換え方法を説明し,続いて,スリットの選択について説明する.

① 0次と1次スペクトルの切り換え

最初,図2.1.1のようにORIHIME動作ソフトのホルダを開き,動作ソフトを起動する.すると, 図2.1.2のようなウインドウが開き,スリットビュワーとスペクトルが選択できるようになって いる.そこで,「スリットビュワー」を選ぶと0次のスペクトルが選択され,観測天体を視野内に 導入できるようになる.また「スペクトル」を選ぶと1次のスペクトルが選択され,その天体の スペクトルが撮像できるようになる.

ただし、実際に天体を視野内に導入したり、スペクトルを撮像したりするためには、スリット を選択しなければならない.

② スリットの選択

本分光器では、ZWOのEFWに、フィルターの代わりに、スリットがはめられており、次の ようになっている.

- EFW1:スリットビュワー
- EFW2:250μmスリット
- EFW3:75μmスリット
- EFW4:30μmスリット
- EFW5:15μmスリット

これらを選択するためには、図 2.1.3 のように、まずASI Studio を起動する.

図2.1.3 ASI Studioの起動

図2.1.4 ASI Liveの起動

図2.1.5 スリットの選択

続いて、図 2.1.4 のように、まずASI Live を起動して、フィルター番号を選択する.

2. 2スペクトルの撮像

① 観測天体の導入

スペクトルを 0 次のスペクトルに切り換え,スリットをスリットビュワー(EFW1)とする. そして,図 2.2.1 のように観測天体を視野内に導入し,ヘアライン上の視野中央に合わせる.次に,スリットを 250 µm スリット(EFW2)とし,天体がスリットの中央にとらえられていること を確認する.このとき,もしスリットが傾いていたら,カメラを回転させてスリットが画角の縦 軸方向と平行になるように調整する.

図 2.2.1 スリットビュワー画像 中央の縦線がヘアライン

続いて、スペクトルを1次のスペクトルに設定し、観測に適したスリットを選択する.

- ・75µmスリット(EFW3):天体が暗く,長時間露光が必要な観測で使用
- ・30μmスリット(EFW4):75μmと15μmスリットの中間的な観測で使用
- ・15μmスリット(EFW5):視線速度を正確に求めるなど,精度が必要な観測で使用

② 観測天体のスペクトルの撮像

観測天体のスペクトルを撮像する(図 2.2.2). このとき,もしスペクトルの波長の分散方向が画 角の横軸に対して傾いていたらスリットと回折格子の溝が平行になっていない証拠である. そこ で,スリットに対して回折格子を回転させてスペクトルの分散方向が画角の横軸方向と平行にな るように設定する. 観測天体のスペクトルの撮像後,そのダーク画像を撮像する.

③ 波長較正用光源のスペクトルの撮像

波長較正用光源(図 2.2.3)を撮像する.このとき,望遠鏡の方向が変わると接眼部のたわみも変 化するため,正しい波長較正ができなくなる.そこで,望遠鏡の駆動装置を一旦停止して,波長 較正用光源とそのダークを撮像する.

波長較正用光源が水銀灯とナトリウム灯であった場合,両者の明るさは相当違う.そこで,水 銀灯とナトリウム灯を別々に撮像し,後で合成して波長較正用光源画像とする.

波長較正用光源のスペクトルを撮像後,そのダーク画像を撮像する.そして,フラット画像と フラットダーク画像を撮像する.

図 2.2.3 波長校正用光源のスペクトル

図 2.2.4 分光標準星のスペクトル

2.3分光標準星の撮像

① 分光標準星の撮像

観測天体からの光は地球大気を通過しており、そこで吸収・散乱を受けている.地球大気によ る吸収・散乱は天体からの光が通過した距離、つまり天体の地平高度に依存する.そのため、厳 密な分光観測では(特に観測天体の地平高度が低い場合は)、観測天体より地平高度が高い分光標 準星と低い分光標準星といったように、複数の分光標準星を選択する必要がある.しかし、大ま かなスペクトルの形状がわかれば十分な観測では、観測天体と地平高度が同程度の分光標準星を 一つ選択するだけでも良い.

分光標準星のスペクトルの撮像は観測天体の撮像と同じように行う. つまり, スリットをスリ ットビュワーとして 0 次のスペクトルに設定する. そして, 分光標準星を視野内に導入し, ヘア ライン上の視野中央に合わせる. 次に, スリットを 250 µm スリットとし, 分光標準星がスリット の中央にとらえられていることを確認する.

続いて、スペクトルを1次のスペクトルとし、観測天体と同じスリットを選択して分光標準星 のスペクトルを撮像し(図 2.2.4)、スペクトルのダーク画像を撮像する.なお、一般に観測天体と 分光標準星の方向は相当異なるので、撮像時の接眼部のたわみも異なると考えられる.そのため、 分光標準星においても観測天体と同様に波長較正用光源のスペクトルやフラット画像を撮像する 必要がある.

3. 解析方法

3. 1波長較正

通常,天体のスペクトル画像は,図2.2のように横軸を波長の分散方向,縦軸をスリットの長 さ方向にとって撮像する.したがって,横軸のピクセル座標 nx が波長の何Åに相当するかを表す 換算式を求める必要がある.この換算式を求める操作を「波長較正」という.

波長較正は図 3.1.1 のような観測時に撮像された波長較正用光源のスペクトルを利用して行う が、このスペクトル画像を詳しく見ると光源の輝線がわずかだが短波長側に凸に湾曲している. これは画像の上下端では天体から来た光がスリットに対して斜めに入射することによって生じる 現象である.つまり、ピクセル座標を波長λに換算する式は、横軸 nx だけではなく縦軸のピクセ ル座標 ny にも依存した複雑な関数となる.

以下ではマカリィとエクセルを使って、まずスペクトル線の湾曲を無視した平均的な波長較正 の換算式を求め、続いて湾曲も考慮した厳密な換算式を求める方法について記述する.

① 波長較正用光源のスペクトル

まず、マカリィで波長較正用光源のスペクトル画像を開く.波長較正用光源として水銀灯とナ トリウム灯を別々に撮像した場合は、両方の画像を加算し、それを波長較正用光源画像とする.

水銀灯の輝線スペクトルの波長は短波長側から 4046.56Å, 4358.35Å, 5460.74Å, 5769.59Å, 5790.65Åであり、ナトリウム灯の輝線スペクトルの波長は 5892.94Å*である.(※本分光器では スリット間隔が 15µm のスリットを用いない限りナトリウムの D 線の 5895.92Åと 5889.95Åが 分解できないため平均値を記載した.)なお、ナトリウム灯には希薄なアルゴン気体も封入されて いるため、その輝線(6965.43Å, 7067.22Å, 7383.98Å, …)が見えることがあり、その場合は それらも波長較正に利用できる.

図3.1.1 波長較正用光源のスペクトル画像

② 波長較正 (その1)

波長較正用光源のスペクトル画像は,図3.1.1のようにわずかに短波長側に凸に湾曲している. したがって、精密な測定ではこの湾曲も考慮した波長較正を行う必要がある.

しかし、その作業は多少煩雑であるため、ここでは第1ステップとしてスペクトル画像の平均 的な波長較正の換算式を求める.

図3.1.2 マカリィのグラフコマンドでグラフの数値をCSVファイルにエクスポートする

この例では,波長較正用光源のスペクトル画像の縦軸のピクセル数が256 ピクセルなので,縦 軸のピクセル範囲が,20~30(中心25),45~55(中心50),70~80(中心75),…,195~205(中心 200),220~230(中心225)と9組の範囲のグラフを作成し,その数値をCSVファイルにエクスポ ートする(図3.1.2).

続いて、エクセルのファイルを開き、それに先程エクスポートした9組のファイルを順に貼り つける(図 3.1.3). そして、エクセルファイルを見て波長較正用光源の輝線の位置(横軸でのピク セル位置)を探し出し、その場所のセルを着色する(図 3.1.4). 本来ならば輝線の位置はその線輪 郭にガウス関数などをあてはめて求めるのが正しいが、ここでは単に最大値の場所を「輝線の位 置」とした.

	□ う · ♂ · =											
יד	ファイル ホーム 挿入 ページ レイアウト 数式 データ 校閲 表示 ヘルプ 📿 何をしますか											
貼り	$\begin{bmatrix} & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & $											
G1	*		√ fx	・ カウント	。值		1.2				121	비지
	A	В	С	D	E	F	G	Н	1	J	K	L
1	X座標	Y座標	25	50	75	100	カウント値	I				
2	1	25	69.27273	80	95.18182	75.09091	96.45454					
3	2	25	89.72727	67.36364	79.18182	62.18182	75.81818		- 47	. ા	レモガ	= 7 0
4	3	25	67	81.18182	83.27273	85.18182	72		エクス	シート	したク	<i>y y (</i>)
5	4	25	87.09091	101.6364	102	79.45454	94.63636		数値を	順に張り	り付ける	5.
6	5	25	118.9091	97.90909	66.72727	94	73.90909		1			
7	6	25	98.54546	78.45454	83.72727	68.63636	81.27273					
8	7	25	125.8182	82.81818	82.90909	86	100.2727					
9	8	25	92.90909	88	64.18182	104.0909	78.09091					
10	9	25	92.36364	97.72727	119.7273	85.27273	91.72727					
11	10	25	104	95.54546	179.4545	223.1818	260.8182					
12	11	25	406.3636	981.3636	1269.182	1291.727	1404.091					
13	12	25	868.4545	761.4545	860.0909	971.4545	937.2727					
14	13	25	633.8182	747.9091	638.1818	504.5454	439.4546					_
15	14	25	586.2727	433.0909	249.2727	253.2727	246					
16	15	25	387.1818	299.8182	183.5455	244.2727	219.3636					

図3.1.3 エクスポートしたグラフの数値をエクセルファイルに順に張り付ける

	D ・ C · - 波長較正.xlsx - Excel											
ידכ	イルホーム	挿入	ページ レイアウト	• 数式 •	データ 校閲	表示	∿IJ Q	何をしますか				
	☆ 切り取り 游ゴシック ・ 11 ・ A A = = = ※ ・ 診 折り返して全体を表示する 標準											
貼り												
	クリップボ	のコピー/頭り付 一ド			フォント		12		配置			数値
1/1												
N1	4		<i>∀ J</i> х	555.454	52001							
1	A	В	С	D	E	F	G	Н	L	J	K	L
1	X座標	Y座標	25	50	75	100	125	150	175	200	225	5
2	1	25	69.27273	80	95.18182	75.09091	96.45454	42.90909	84.09091	75.63636	93.81818	3
3	2	25	89.72727	67.36364	79.18182	62.	ᄐᇏᅮᄪ			纪 40.40	FC 8)	The second
4	3	25	67	81.18182	83.27273	85. 次,	反較止用	光源の	啤 稼(水	 4046.	56A)	OE-
5	4	25	87.09091	101.6364	102	79. ク	立置のセ	:ルに色	をつけて	わかり	やすく	する。
6	5	25	118.9091	97.90909	66.72727					_	r	27
7	6	25	98.54546	7 <mark>8.45</mark> 454	83.72727	68.63636	81.27273	61.72727	95.36364	81.	8	3
8	7	25	125.8182	82.81818	82.90909	86	100.2727	97.54546	108	81.8	В	5
9	8	25	92.90909	88	64.18182	104.0909	78.09091	97.90909	85.90909	82.181	73	3
10	9	25	92.36364	97.72727	119.7273	85.27273	91.72727	95.36364	266.7273	92.63636	.82	2
11	10	25	104	95.54546	179.4545	223.1818	260.8182	167.4545	119.8182	78.54546	84	1
12	11	25	406.3636	981.3636	1269.182	1291.727	1404.091	1488.727	1210.818	350.0909	94 273	3
13	12	25	868.4545	761.4545	860.0909	971.4545	937.2727	993.3636	1060.091	1208.364	897.8182	2
14	13	25	633.8182	747.9091	638.1818	504.5454	439.4546	493.5454	706.2727	862.2727	955.454	5
15	14	25	586.2727	433.0909	249.2727	253.2727	246	182.2727	209.8182	514.8182	731.0909	9
16	15	25	387.1818	299.8182	183.5455	244.2727	219.3636	254.3636	303.3636	254.9091	430.272	7

図3.1.4 波長較正用光源の輝線のピーク位置のセルに色をつける

図 3.1.4 より,明らかに輝線の位置は短波長側(横軸のピクセル座標 nx の小さい側)に凸に湾 曲している.そこで,各波長較正用光源の輝線の位置を表にまとめ,その平均値を求める(図 3.1.5). 次に,先程求めた輝線の位置の平均値を横軸に,その波長を縦軸にとってグラフ化する.すると ほとんど直線状のグラフが得られるが,これがスペクトル画像の平均的な波長較正の換算曲線で ある.このことから本分光器の波長分散がほぼ線形であることがわかる(図 3.1.6).

6	ئ د د	ka ≠								波長望	较正.xlsx - E	
ファ・	イル ホーム	挿入 /	ページ レイアウト	数式 5	データ 校閲	表示	∿rt Q	何をしますか				
1	1 👗 切り用	 2D	游ゴシッ	ウ	- t	.1 • Å /	,	≡ ≫ ·	eb 折り返	這して全体を表	示する 標	
貼り	□ 暗 コヒー 付け - ダ書式(、 のコピー/貼り付	b B I	<u>u</u> - <u>H</u>	~ 🙆 -	<u>A</u>	• = =	≡ € ₹	セルを	結合して中央	前え 🗸 🧧	
	クリップボ	-*	ē	7	オント		ē		配置		E .	
V1		: ×	$\checkmark f_x$	平均								
	L	M	N	0	Ρ	Q	R	S	T	U	V	
1	波長	25	50	75	100	125	150	175	200	225	平均	
2	4046.56	12	11	11	11	11	11	11	12	13	11.44444	
3	4358.35	48	47	47	47	47	47	47	48	48	47.33333	
4	5460.74	171	170	170	170	170	170	170	170	171	170.2222	
5	5769.59	204	203	203	203	203	203	203	204	204	203.3333	
6	5892.94	217	216	216	215	215	216	216	216	217	216	
7	6965.43	328	327	327	327	327	327	327	328	328	327.3333	
8	7067.22	339	339	338	338	338	338	339	339	340	338.6667	
	$\land \qquad \land \qquad \land$											
波	波長較正用光源の輝線 波長較正用光源の輝線の位置をまと 波長較正用光源の輝線								の輝線			
の	波長			めた表				(の位置の	平均值		

図3.1.5 波長較正用光源の輝線のピーク位置を表にまとめてその平均値を求める

図3.1.6 輝線の位置の平均値を横軸に、その波長を縦軸にとったグラフ

しかし、このグラフを詳細に調べると、わずかだが直線からのずれが存在することがわかる. そこで、換算式を nx の1 次方程式から2 次方程式に次数を上げると、そのずれは画期的に減少 し、十分な精度で波長と横軸のピクセル座標 nx の関係を表すことができる.これが平均的な波長 較正の換算式である.

今回求めた平均的な波長較正の換算式を(1)式に示す.

$$\lambda = An_x^2 + Bn_x + C_0 \quad \cdots \quad (1)$$

ただし, A=0.0019Å, B=8.5758Å, C₀=3947.9Åである.

③ 波長較正 (その2)

(1)式はあくまでスペクトル画像の平均的な波長較正の換算式にすぎない。図 3.1.1 を見ても, 明らかに波長較正用光源のスペクトルは短波長側に凸に湾曲している.そこで,第2ステップと してスペクトル線の湾曲も考慮した換算式を求める.

E	□ 今 ~ ♂ ~ ⇒ 波長較正.xlsx - Excel												
ファ	イルホーム	挿入	ページ レイアウト	、数式	データ 校閲	表示	∿lJ Ç	何をしますか					
ان الله	ン 波長較 の位置	T 正用光 の平均値	源の輝約 直	泉	波長較ī の表	E用光源		の位置な	いらその	平均值	を引	いた値	, 値
AG	14		$\checkmark f_x$										
		W	Х	Y	Z		AB	AC	AD	AE	AF	AG	
1	平均	25	50	75	100	125	150	175	200	225			
2	11.44444	0.555556	-0.44444	-0.44444	-0.44444	-0.44444	-0.44444	-0.44444	0.555556	1.555556			
3	47.33333	0.666667	-0.33333	-0.33333	-0.33333	-0.33333	-0.33333	-0.33333	0.666667	0.666667		輝線の	
4	170.2222	0.777778	-0.22222	-0.22222	-0.22222	-0.22222	-0.22222	-0.22222	-0.22222	0.777778		迹曲の	
5	203.3333	0.666667	-0.33333	-0.33333	-0.33333	-0.33333	-0.33333	-0.33333	0.666667	0.666667		1与Ⅲ ♡ノ	
6	216	1	0	0	-1	-1	0	0	0	1		平均值	
7	327.3333	0.666667	-0.33333	-0.33333	-0.33333	-0.33333	-0.33333	-0.33333	0.666667	0.666667	//L		
8	338.6667	0.333333	0.333333	-0.66667	-0.66667	-0.66667	-0.66667	0.333333	0.333333	1.333333			
9	平均	0.666667	-0.19048	-0.33333	-0.47619	-0.47619	-0.33333	-0.19048	0.380952	0.952381			
10													

図3.1.7 波長較正用光源の輝線の位置からその平均値を引いた値の表

まず,図 3.1.7 のようにエクセルで波長較正用光源の輝線の位置からその平均値を引いた表を 作成し、そのグラフを描く(図 3.1.8). すると,図 3.1.8 の横軸は画像のスリット方向のピクセル 座標 ny で縦軸は各波長較正用光源の輝線スペクトルの湾曲(平均値からのずれ)のグラフとなっ ている.

図 3.1.8 から,各波長較正用光源の輝線の湾曲には(nxに依存した)系統的なずれはなく,それらの位置は同じ ny の 2 次曲線上にあり,その曲線からのずれはあくまで輝線位置の読み取り誤差で,±0.5 ピクセル程度と推測できる[※].(※波長に換算すると約 5 Åの誤差)

図3.1.8 スリットの長さ方向のピクセル座標を横軸に輝線位置の湾曲を縦軸にとったグラフ

したがって、輝線位置の湾曲は、nxには依存せず、(2)式のようにあらわせる.

$$\lambda = an_{\nu}^2 + bn_{\nu} + c \quad \cdots \quad (2)$$

ただし, a=0.0001Å, b= -0.0299Å, c=1.1973Åである.

以上のことから,スペクトル画像の平均的な波長較正の換算式は(1)式で与えられ,平均からの ずれ(すなわちスペクトル線の湾曲)は(2)式で与えられることから,求める波長較正の換算式は, (3)式で与えられることが分かる.

$$\lambda = An_x^2 + Bn_x + C_0 + an_y^2 + bn_y + c \quad \cdots \quad (3)$$

ただし, *A*=0.0019Å, *B*=8.5758Å, *C*₀=3947.9Å, *a*=0.0001Å, *b*=-0.0299Å, *c*=1.1973Åで ある.

④ M57 の輝線スペクトルの波長の測定

以下では,波長較正で求めた換算式を使い,惑星状星雲 M57 の輝線スペクトルの波長を求める. 惑星状星雲からは,電離した酸素や窒素の禁制線に加えて水素のバルマー線の輝線が見えること が知られている.

図 3.1.9に M57 のスペクトル画像を示す.この画像をマカリィで読み込み,図 3.1.10 のように 縦軸のピクセル範囲が 125~155(中心 140)の範囲のグラフを作成し,その数値を CSV ファイルに エクスポートする.そして,グラフ上で輝線がピークとなる位置のピクセル座標(*nx*, *ny*)を(3)式 に代入すると輝線スペクトルの波長が求まる.なお,この観測は 30 µ m のスリットを用いて行っ たため±10Åの波長測定誤差があることを忘れてはいけない. その結果,波長 4967±6 Åの輝線は[OIII]4959Å, 5012±6 Åの輝線は[OIII]5007Å, 6555±6 Åの輝線は[NII]6548Å, 6584±6 Åの輝線は[NII]6584Å であると推測される.

図3.1.9 M57 のスペクトル画像

📕 すばる画像処理ソフト:マカリ - SptM5750m	nicron180-D.fts			
77fル(F) 編集(E) 画像表示(V) 画像演	[算(P) 画像情報(I) データ処理(D)	データ1次処理(A) ウィンドウ(W	√) ∿⊮7 [°] (H)	
● 🗳 📕	ED刷 FITSヘッダー	回 潮 切り抜き ブリンク	▲ 位置測定	
Q グレースケール ~	☑対数 -769.238	A	4473.76	62 自動調整 マークの非表示…
X: Y: カウント値	: 平均值:			
暨 SptM5750micron180-D.fts (1倍) [340	x25 🗖 🔲 🔀 🎾 77 [5	SptM5750micron180-D.fts]		X
	X:	Y: かント値:		
	ゲラフ選	訳範囲: [] 📫 : 340) 💠 . 155 💠 : 12	25 🔷] 始点からの距離:
	1027	500		
	-25	00.0_0.00.0	A 100.0 150.0	へ 200.0 250.0 300.0 始点からの距離 [pixels]
	水平 マーク: 	<): 藤度 □対数 □すべ 消去(E) □別画 分散軸変更(A)	> (L) スケール設定(S) (L) で表示(G) 線のケラフ表示(D) 開じる(C) ヘルフでH)

図3.1.10 縦軸の範囲が125~155(中心140)の範囲のグラフをCSVファイルにエクスポート

3.2 波長感度補正

撮像された天体のスペクトルは、ダーク画像を減算することにより CCD の暗電流を除去し、フ ラット画像で割り算することにより光学系の周縁減光や CCD の感度むらなどを補正する.

しかし、フラット画像は通常ハロゲンランプなどの光を白板に反射させて撮像するため、天体のスペクトルの波長依存性がその影響を受けることになる.そのため、天体のスペクトルの波長 依存性を正しい分布に補正する必要がある.この補正のことをスペクトルの「波長感度補正」という.

スペクトルの波長感度補正は,観測時に観測対象となった天体の近傍にある「分光標準星」を 撮像し,それを既知のスペクトル強度と比較して波長ごとの補正係数を求め,その補正係数を観 測対象の天体のスペクトルにかけることによって行う.

なお、分光標準星とは長年の観測でスペクトルが時間変動しないことが分かっていて、波長ご とのスペクトルの強度が精密に測定され数値化されている恒星のことであり、そのスペクトルデ ータは、例えば ESO(European Southern Observatory)の分光測光標準星スペクトルデータベー ス

<u>https://www.eso.org/sci/observing/tools/standards/spectra/stanlis.html</u> を利用すると入手できる.

しかし,分光標準星のデータベースに掲載されているスペクトルデータと我々が観測で波長付 けしたスペクトルでは一般に波長の値も波長のステップも異なっている.そのため,波長ごとの 補正係数を求める際に相当煩雑な作業を行わねばならなくなる.

このとき、グラフを自動で読み取り数値化するソフト「Graphcel」を利用するとスペクトルの 波長感度補正が非常に簡単に行える. Graphcel はフリーのソフトであり、簡単に入手できる. そ こで、以下では Graphcel を用いたスペクトルの波長感度補正について紹介する.

①ESOの分光測光標準星のデータベースを開く.

②ESO の分光測光標準星データベースから適当な分光標準星を選択する.

④おおぐま座 γ 星のスペクトルデータが表示される.

⑤数値表をWindows アクセサリの「メモ帳」にコピー,保存する.

図 3.2.5 おおぐま座γ星のスペ クトルを「メモ帳」にコ ピー

Carronal Ma - Parel 500.0001 0.00E+00 0.00E+00 500.3347 0.00E+00 0.00E+00 501.5707 0.00E+00 0.00E+00 502.5081 0.00E+00 0.00E+10 503.3468 0.00E+00 0.00E+00 図 3.2.6 メモ帳で保存したテキ ストファイルをエクセ ルで開く

⑥「メモ帳」で保存したテキストファイルをエクセルで開く.

Р 22КАЛЬТИНЯ

0 🛢 😨 🍓 🗿

⑦エクセルで横軸が波長,縦軸がスペクトル強度のグラフを描く.このとき,横軸の波長の範囲 は観測での波長の範囲に合わせておく.

図 3.2.7 エクセルでスペクトル データのグラフを描画

⑧描いたグラフを Windows アクセサリの「ペイント」に張り付ける.

⑨ペイントの「図形の選択」で「四角形選択」を選び、下図のようにグラフの部分だけを選択し、

⑩保存した jpg ファイルを Graphcel で開く. グラフの横軸の「最大値(Å)」,「最小値(Å)」,「横軸方向の分割数」,「縦軸の最大値」,「最小値」を入力し、グラフを数値化する.

1)数値は自動でエクセルファイルにエクスポートされるので、そのファイルに適切な名称(ここでは GammaUMaESO.xls)を付けて保存する.

②続いて、観測時に撮像し、ダーク・フラット処理を行った分光標準星のスペクトルのグラフを

③描いたグラフを「ペイント」の画面に張り付ける

(4)ペイントの「図形の選択」で「四角形選択」を選び、下図のようにグラフの部分だけを選択し、

(⑤jpg ファイルを Graphcel で開き, グラフの横軸の「最大値(Å)」,「最小値(Å)」,「横軸方向の分 割数」,「縦軸の最大値」,「最小値」を入力し, グラフを数値化する. ただし, 横軸の最大値, 最 小値, 横軸方向の分割数は先程と同じ値にする.

図 3.2.15 Graphcelの操作画面

⑥数値は自動でエクセルファイルにエクスポートされるので、そのファイルに適切な名称(ここ)

⑦GammaUMaESO.xls と GammaUMaObs.xls を合体させて、スペクトル強度の比をとり、波長ごとの補正係数を求める.

18波長感度補正の例

以下,波長感度補正の例を示す.図 3.2.18 は撮像した満月のスペクトルに波長感度補正を行ったものである.月は太陽光を反射しているため,太陽と同じく 5000Å付近にピークがあり,5800Kの黒体放射に近いスペクトルであることが分かる.

4. 付録

4. 1分光標準星一覧

HR9087	00 01 49.42	-03 01 39.0	5.12	B7III		
G158-100	00 33 54.32	-12 07 57.1	14.89	dG-K		
HR153	00 36 58.30	+53 53 48.9	3.66	B2IV		ζ Cas
CD-34d241	00 41 46.92	-33 39 08.5	11.23	F	t	
BPM16274	00 50 03.18	-52 08 17.4	14.20	DA2	Mod.	
LTT1020	01 54 49.68	-27 28 29.7	11.52	G		
HR718	02 28 09.54	+08 27 36.2	4.28	B9III		ξ ² Cet
EG21	03 10 30.98	-68 36 02.2	11.38	DA		
LTT1788	03 48 22.17	-39 08 33.6	13.16	F		
GD50	03 48 50.06	-00 58 30.4	14.06	DA2		
SA95-42	03 53 43.67	-00 04 33.0	15.61	DA		
HZ4	03 55 21.70	+09 47 18.7	14 . 52	DA4		
LB227	04 09 28.76	+17 07 54.4	15.34	DA4		
HZ2	04 12 43.51	+11 51 50.4	13.86	DA3	r	
HR1544	04 50 <mark>36.6</mark> 9	+08 54 00.7	4.36	A1V		π ² Ori
GD71	05 52 27.51	+15 53 16.6	13.03	DA1		
G191-B2B	05 05 30.62	+52 49 54.0	11.78	DA1		
HR1996	05 45 59.92	-32 18 23.4	5.17	09V	Mod.	
LTT2415	05 56 24.30	-27 51 28.8	12.21			
HILT600	06 45 13.33	+02 08 14.1	10.44	B1		
HD49798	06 48 04.64	-44 18 59.3	8.30	06	Mod.	
HD60753	07 33 27.26	-50 35 03.7	6.70	B3IV	Mod.	
G193-74	07 53 27.40	+52 29 35.7	15.70	DA0		
BD+75d325	08 10 49.31	+74 57 57.5	9 . 54	05p		
LTT3218	08 41 32.37	-32 56 32.9	11.86	DA		
HR3454	08 43 13.46	+03 23 55.1	4.30	B3V		η Hyd
AGK+81d266	09 21 19.06	+81 43 28.6	11.92	sd0	l	
GD108	10 00 47.33	-07 33 <mark>31.2</mark>	13.56	sdB		
LTT3864	10 32 13.90	-35 37 42.4	12.17	F		
Feige34	10 39 36.71	+43 06 10.1	11.18	DO		
HD93521	10 48 23.51	+37 34 12.8	7.04	09Vp		
HR4468	11 36 40.91	-09 48 08.2	4.70	89.5V		θCrt
LTT4364	11 45 42.92	-64 50 29.5	11.50	C2		
HR4554	11 53 49.83	+53 41 41.1	2.44	AOV	Mod.	γ UMa

Feige56	12 06 47.25	+11 40 12.7	11.06	B5p
HZ21	12 13 56.42	+32 56 30.8	14 .6 8	D02
Feige66	12 37 23.55	+25 04 00.3	10.50	sd0
LTT4816	12 38 50.94	-49 47 58.8	13.79	DA
Feige67	12 41 51.83	+17 31 20.5	11.81	sd0
GD153	12 57 02.37	+22 01 56.0	13.35	DA1
G60-54	13 00 09.53	+03 28 55.7	15.81	DC
HR4963	13 09 56.96	-05 32 20.5	4.38	Aliv
HZ43	13 16 21.99	+29 05 57.0	12.91	DA1
HZ44	13 23 35.37	+36 08 00.0	11 .6 6	sd0
GRW+70d5824	13 38 51.77	+70 17 08.5	12.77	DA3
HR5191	13 47 32.44	+ 4 9 18 4 8.0	1.86	B3V Mod.
CD-32d9927	14 11 46.37	-33 03 14.3	10.42	AO
HR5501	14 45 30.25	+00 43 02.7	5.68	B9.5V
LTT6248	15 39 00.02	-28 35 33.1	11.80	A
BD+33d2642	15 <mark>51 59.86</mark>	+32 56 54.8	10.81	B2IV
EG274	16 23 33.75	-39 13 47.5	11.03	DA
G138-31	16 27 53.59	+09 12 24.5	16.14	DC
LTT7379	18 36 26.29	-44 18 33.0	10.23	GO
HR7001	18 36 56.33	+38 47 01.1	0.00	AOV
HR7596	19 54 44.80	+00 16 24.6	5.62	AOIII
LTT7987	20 10 57.38	-30 13 01.2	12.23	DA
G24-9	20 13 56.05	+06 42 55.2	15.72	DC
HR7950	20 47 40.55	-09 29 44.7	3.78	A1V
LDS749B	21 32 15.75	+00 15 13.6	14.67	DB4
BD+28d4211	21 51 11.07	+28 51 51.8	10.51	Op
G93-48	21 52 25.33	+02 23 24.3	12.74	DA3
BD+25d4655	21 59 42.02	+26 25 58.1	9.76	0
NGC 7293	22 29 38.46	-20 50 13.3	13.51	V.Hot
HR8634	22 41 27.64	+10 49 53.2	3.40	B8V
LTT9239	22 52 40.88	-20 35 26.3	12.07	F
LTT9491	23 19 <mark>34.9</mark> 8	-17 05 29.8	14.11	DC
Feige110	23 19 58.39	-05 09 55.8	11.82	DOp
GD248	23 26 06.69	+16 00 21.4	15.09	DC

θVir

η UMa

a Lyr

ε Aqu

ζ Peg